ترغب بنشر مسار تعليمي؟ اضغط هنا

AGILE detection of intense gamma-ray emission from the blazar PKS 1510-089

287   0   0.0 ( 0 )
 نشر من قبل Filippo D'Ammando
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the detection by the AGILE (Astro-rivelatore Gamma a Immagini LEggero) satellite of an intense gamma-ray flare from the source AGL J1511-0909, associated with the powerful quasar PKS 1510-089, during ten days of observations from 23 August to 1 September 2007. During the observation period, the source was in optical decrease following a flaring event monitored by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT). The simultaneous gamma-ray, optical, and radio coverage allows us to study the spectral energy distribution and the theoretical models based on the synchrotron and inverse Compton (IC) emission mechanisms. AGILE observed the source with its two co-aligned imagers, the Gamma-Ray Imaging Detector and the hard X-ray imager Super-AGILE sensitive in the 30 MeV - 50 GeV and 18 - 60 keV bands, respectively. Between 23 and 27 August 2007, AGILE detected gamma-ray emission from PKS 1510-089 when this source was located about 50 degrees off-axis, with an average flux of (270 +/- 65) x 10^{-8} photons cm^{-2} s^{-1} for photon energy above 100 MeV. In the following period, 28 August - 1 September, after a satellite re-pointing, AGILE detected the source at about 35 degrees off-axis, with an average flux (E > 100 MeV) of (195 +/- 30) x 10^{-8} photons cm^{-2} s^{-1}. No emission was detected by Super-AGILE, with a 3-sigma upper limit of 45 mCrab in 200 ksec. The spectral energy distribution is modelled with a homogeneous one-zone synchrotron self Compton (SSC) emission plus contributions by external photons: the SSC emission contributes primarily to the X-ray band, whereas the contribution of the IC from the external disc and the broad line region match the hard gamma-ray spectrum observed.

قيم البحث

اقرأ أيضاً

We report on the extreme gamma-ray activity from the FSRQ PKS 1510-089 observed by AGILE in March 2009. In the same period a radio-to-optical monitoring of the source was provided by the GASP-WEBT and REM. Moreover, several Swift ToO observations wer e triggered, adding important information on the source behaviour from optical/UV to hard X-rays. We paid particular attention to the calibration of the Swift/UVOT data to make it suitable to the blazars spectra. Simultaneous observations from radio to gamma rays allowed us to study in detail the correlation among the emission variability at different frequencies and to investigate the mechanisms at work. In the period 9-30 March 2009, AGILE detected an average gamma-ray flux of (311+/-21)x10^-8 ph cm^-2 s^-1 for E>100 MeV, and a peak level of (702+/-131)x10^-8 ph cm^-2 s^-1 on daily integration. The gamma-ray activity occurred during a period of increasing activity from near-IR to UV, with a flaring episode detected on 26-27 March 2009, suggesting that a single mechanism is responsible for the flux enhancement observed from near-IR to UV. By contrast, Swift/XRT observations seem to show no clear correlation of the X-ray fluxes with the optical and gamma-ray ones. However, the X-ray observations show a harder photon index (1.3-1.6) with respect to most FSRQs and a hint of harder-when-brighter behaviour, indicating the possible presence of a second emission component at soft X-ray energies. Moreover, the broad band spectrum from radio-to-UV confirmed the evidence of thermal features in the optical/UV spectrum of PKS 1510-089 also during high gamma-ray state. On the other hand, during 25-26 March 2009 a flat spectrum in the optical/UV energy band was observed, suggesting an important contribution of the synchrotron emission in this part of the spectrum during the brightest gamma-ray flare, therefore a significant shift of the synchrotron peak.
We report the detection by the AGILE satellite of a rapid gamma-ray flare from the powerful gamma-ray quasar PKS 1510-089, during a pointing centered on the Galactic Center region from 1 March to 30 March 2008. This source has been continuosly monito red in the radio-to-optical bands by the GLAST-AGILE Support Program (GASP) of the Whole Earth Blazar Telescope (WEBT). Moreover, the gamma-ray flaring episode triggered three ToO observations by the Swift satellite in three consecutive days, starting from 20 March 2008. In the period 1-16 March 2008, AGILE detected gamma-ray emission from PKS 1510-089 at a significance level of 6.2-sigma with an average flux over the entire period of (84 +/- 17) x 10^{-8} photons cm^{-2} s^{-1} for photon energies above 100 MeV. After a predefined satellite re-pointing, between 17 and 21 March 2008, AGILE detected the source at a significance level of 7.3-sigma, with an average flux (E > 100 MeV) of (134 +/- 29) x 10^{-8} photons cm^{-2} s^{-1} and a peak level of (281 +/- 68) x 10^{-8} photons cm^{-2} s^{-1} with daily integration. During the observing period January-April 2008, the source also showed an intense and variable optical activity, with several flaring episodes and a significant increase of the flux was observed at millimetric frequencies. Moreover, in the X-ray band the Swift/XRT observations seem to show an harder-when-brighter behaviour of the source spectrum. The spectral energy distribution of mid-March 2008 is modelled with a homogeneous one-zone synchrotron self Compton emission plus contributions from inverse Compton scattering of external photons from both the accretion disc and the broad line region. Indeed, some features in the optical-UV spectrum seem to indicate the presence of Seyfert-like components, such as the little blue bump and the big blue bump.
The flat spectrum radio quasar PKS 1510-089 is a monitored target in many wavelength bands due to its high variability. It was detected as a very-high-energy (VHE) $gamma$-ray emitter with H.E.S.S. in 2009, and has since been a regular target of VHE observations by the imaging Cherenkov observatories H.E.S.S. and MAGIC. In this paper, we summarize the current state of results focusing on the monitoring effort with H.E.S.S. and the discovery of a particularly strong VHE flare in 2016 with H.E.S.S. and MAGIC. While the source has now been established as a weak, but regular emitter at VHE, no correlation with other energy bands has been established. This is underlined by the 2016 VHE flare, where the detected optical and high-energy $gamma$-ray counterparts evolve differently than the VHE flux.
The quasar PKS 1510-089 (z=0.361) was observed with the H.E.S.S. array of imaging atmospheric Cherenkov telescopes during high states in the optical and GeV bands, to search for very high energy (VHE, defined as E >= 0.1 TeV) emission. VHE gamma-rays were detected with a statistical significance of 9.2 standard deviations in 15.8 hours of H.E.S.S. data taken during March and April 2009. A VHE integral flux of I(0.15 TeV < E < 1.0 TeV) = (1.0 +- 0.2 (stat) +- 0.2 (sys) x 10^{-11} cm^{-2}s^{-1} is measured. The best-fit power law to the VHE data has a photon index of Gamma=5.4 +- 0.7 (stat) +- 0.3 (sys). The GeV and optical light curves show pronounced variability during the period of H.E.S.S. observations. However, there is insufficient evidence to claim statistically significant variability in the VHE data. Because of its relatively high redshift, the VHE flux from PKS 1510-089 should suffer considerable attenuation in the intergalactic space due to the extragalactic background light (EBL). Hence, the measured gamma-ray spectrum is used to derive upper limits on the opacity due to EBL, which are found to be comparable with the previously derived limits from relatively-nearby BL Lac objects. Unlike typical VHE-detected blazars where the broadband spectrum is dominated by non-thermal radiation at all wavelengths, the quasar PKS 1510-089 has a bright thermal component in the optical to UV frequency band. Among all VHE detected blazars, PKS 1510-089 has the most luminous broad line region (BLR). The detection of VHE emission from this quasar indicates a low level of gamma-gamma absorption on the internal optical to UV photon field.
Context. PKS 1510-089 is one of only a few flat spectrum radio quasars detected in the VHE (very-high-energy, > 100 GeV) gamma-ray band. Aims. We study the broadband spectral and temporal properties of the PKS 1510-089 emission during a high gamma-ra y state. Methods. We performed VHE gamma-ray observations of PKS 1510-089 with the MAGIC telescopes during a long high gamma-ray state in May 2015. In order to perform broadband modelling of the source, we have also gathered contemporaneous multiwavelength data in radio, IR, optical photometry and polarization, UV, X-ray and GeV gamma-ray ranges. We construct a broadband spectral energy distribution (SED) in two periods, selected according to VHE gamma-ray state. Results. PKS 1510-089 has been detected by MAGIC during a few day-long observations performed in the middle of a long, high optical and gamma-ray state, showing for the first time a significant VHE gamma-ray variability. Similarly to the optical and gamma-ray high state of the source detected in 2012, it was accompanied by a rotation of the optical polarization angle and the emission of a new jet component observed in radio. However, due to large uncertainty on the knot separation time, the association with the VHE gamma-ray emission cannot be firmly established. The spectral shape in the VHE band during the flare is similar to the ones obtained during previous measurements of the source. The observed flux variability sets for the first time constraints on the size of the region from which VHE gamma rays are emitted. We model the broadband SED in the framework of the external Compton scenario and discuss the possible emission site in view of multiwavelength data and alternative emission models.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا