ﻻ يوجد ملخص باللغة العربية
The mixed spin-1/2 and spin-1 Ising model on the Bethe lattice with both uniaxial as well as biaxial single-ion anisotropy terms is exactly solved by combining star-triangle and triangle-star mapping transformations with exact recursion relations. Magnetic properties (magnetization, phase diagrams and compensation phenomenon) are investigated in detail. The particular attention is focused on the effect of uniaxial and biaxial single-ion anisotropies that basically influence the magnetic behavior of the spin-1 atoms.
We consider a S=1 kagome Ising model with triquadratic interactions around each triangular face of the kagome lattice, single-ion anisotropy and an applied magnetic field. A mapping establishes an equivalence between the magnetic canonical partition
The spin-1/2 Ising-Heisenberg model on diamond-like decorated Bethe lattices is exactly solved with the help of decoration-iteration transformation and exact recursion relations. It is shown that the model under investigation exhibits reentrant phase
A bipartite entanglement between two nearest-neighbor Heisenberg spins of a spin-1/2 Ising-Heisenberg model on a triangulated Husimi lattice is quantified using a concurrence. It is shown that the concurrence equals zero in a classical ferromagnetic
Mixed-spin Ising model on a decorated Bethe lattice is rigorously solved by combining the decoration-iteration transformation with the method of exact recursion relations. Exact results for critical lines, compensation temperatures, total and sublatt
The mixed spin-(1/2, 1) Ising model on two fully frustrated triangles-in-triangles lattices is exactly solved with the help of the generalized star-triangle transformation, which establishes a rigorous mapping correspondence with the equivalent spin-