ترغب بنشر مسار تعليمي؟ اضغط هنا

Exactly solvable effective mass D-dimensional Schrodinger equation for pseudoharmonic and modified Kratzer problems

440   0   0.0 ( 0 )
 نشر من قبل Ramazan Sever
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We employ the point canonical transformation (PCT) to solve the D-dimensional Schr{o}dinger equation with position-dependent effective mass (PDEM) function for two molecular pseudoharmonic and modified Kratzer (Mie-type) potentials. In mapping the transformed exactly solvable D-dimensional ($Dgeq 2$) Schr{o}dinger equation with constant mass into the effective mass equation by employing a proper transformation, the exact bound state solutions including the energy eigenvalues and corresponding wave functions are derived. The well-known pseudoharmonic and modified Kratzer exact eigenstates of various dimensionality is manifested.



قيم البحث

اقرأ أيضاً

We study in detail the relationship between the Tavis-Cummings Hamiltonian of quantum optics and a family of quasi-exactly solvable Schrodinger equations. The connection between them is stablished through the biconfluent Heun equation. We found that each invariant $n$-dimensional subspace of Tavis-Cummings Hamiltonian corresponds either to $n$ potentials, each with one known solution, or to one potential with $n$-known solutions. Among these Schrodinger potentials appear the quarkonium and the sextic oscillator.
228 - Altug Arda , Ramazan Sever 2010
Exact solutions of effective radial Schr{o}dinger equation are obtained for some inverse potentials by using the point canonical transformation. The energy eigenvalues and the corresponding wave functions are calculated by using a set of mass distributions
A general form of the effective mass Schrodinger equation is solved exactly for Hulthen potential. Nikiforov-Uvarov method is used to obtain energy eigenvalues and the corresponding wave functions. A free parameter is used in the transformation of the wave function.
The three-dimensional Schrodinger equation with a position-dependent (effective) mass is studied in the framework of Supersymmetrical (SUSY) Quantum Mechanics. The general solution of SUSY intertwining relations with first order supercharges is obtai ned without any preliminary constraints. Several forms of coefficient functions of the supercharges are investigated and analytical expressions for the mass function and partner potentials are found. As usual for SUSY Quantum Mechanics with nonsingular superpotentials, the spectra of intertwined Hamiltonians coincide up to zero modes of supercharges, and the corresponding wave functions are connected by intertwining relations. All models are partially integrable by construction: each of them has at least one second order symmetry operator.
We present the exact solution of the Klein-Gordon equation in D-dimensions in the presence of the noncentral equal scalar and vector pseudoharmonic potential plus the new ring-shaped potential using the Nikiforov-Uvarov method. We obtain the exact bo und-state energy levels and the corresponding eigen functions for a spin-zero particles. We also find that the solution for this noncentral ring-shaped pseudoharmonic potential can be reduced to the three-dimensional pseudoharmonic solution once the coupling constant of the noncentral part of the potential becomes zero.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا