ﻻ يوجد ملخص باللغة العربية
We have conducted an extensive observational campaign of SWIFT J1753.5-0127 during June 2007 after its bright outburst episode in 2005. We have performed multi-band optical photometry, optical spectroscopy, X-ray spectroscopy and timing and ULTRACAM optical photometry simultaneously in three bands. Both the optical spectrum and the X-ray spectrum, along with enhanced brightness in broad-band photometry point to recent increased activity. We analyze the different spectral regions, finding a smooth optical continuum with a remarkable lack of lines and a very blue component modulated with a period of 3.2hr and a hard power-law X-ray spectrum. Both the X-ray and optical power spectra are flat at low frequencies up to the 0.1 Hz (10 s) range, then decreasing roughly as a power law consistent with flickering. Furthermore, the optical data show quasi-periodic oscillations (QPOs) near 0.08 Hz (13 s). Together with a dynamical and auto-correlation analysis of the light curves we attempt to construct a complete physical picture of this intriguing system.
We present contemporaneous X-ray, ultraviolet, optical and near-infrared observations of the black hole binary system, Swift J1753.5-0127, acquired in 2012 October. The UV observations, obtained with the Cosmic Origins Spectrograph on the Hubble Spac
We present preliminary results from the analysis of simultaneous multiwavelength observations of the black hole candidate Swift J1753.5-0127. The source is still continuing its outburst started in May 2005, never leaving the Low/Hard State. In the X-
We report on radio and X-ray monitoring observations of the BHC Swift J1753.5-0127 taken over a ~10 year period. Presented are daily radio observations at 15 GHz with the AMI-LA and X-ray data from Swift XRT and BAT. Also presented is a deep 2hr JVLA
We present optical, UV and X-ray monitoring of the short orbital period black hole X-ray binary candidate Swift J1753.5-0127, focusing on the final stages of its 12$-$year long outburst that started in 2005. From September 2016 onward, the source sta
We present Suzaku observations of the Galactic black hole candidate Swift J1753.5-0127 in the low-hard state. The broadband coverage of Suzaku enables us to detect the source over the energy range 0.6 -- 250 keV. The broadband spectrum (2 -- 250 keV)