ترغب بنشر مسار تعليمي؟ اضغط هنا

Oxygen abundance in local disk and bulge: chemical evolution with a strictly universal IMF

161   0   0.0 ( 0 )
 نشر من قبل Roberto Caimmi
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The empirical differential oxygen abundance distribution (EDOD) is deduced from subsamples related to two different samples involving solar neighbourhood (SN) thick disk, thin disk, halo, and bulge stars. The EDOD of the SN thick + thin disk is determined by weighting the mass, for assumed SN thick to thin disk mass ratio within the range, 0.1-0.9. Inhomogeneous models of chemical evolution for the SN thick disk, the SN thin disk, the SN thick + thin disk, the SN halo, and the bulge, are computed assuming the instantaneous recycling approximation. The EDOD data are fitted, to an acceptable extent, by their TDOD counterparts provided (i) still undetected, low-oxygen abundance thin disk stars exist, and (ii) a single oxygen overabundant star is removed from a thin disk subsample. In any case, the (assumed power-law) stellar initial mass function (IMF) is universal but gas can be inhibited from, or enhanced in, forming stars at different rates with respect to a selected reference case. Models involving a strictly universal IMF (i.e. gas neither inhibited from, nor enhanced in, forming stars with respect to a selected reference case) can also reproduce the data. The existence of a strictly universal IMF makes similar chemical enrichment within active (i.e. undergoing star formation) regions placed in different environments, but increasing probability of a region being active passing from SN halo to SN thick + thin disk, SN thin disk, SN thick disk, and bulge. On the basis of the results, it is realized that the chemical evolution of the SN thick + thin disk as a whole cannot be excluded.

قيم البحث

اقرأ أيضاً

The evolution of the Milky Way bulge and its relationship with the other Galactic populations is still poorly understood. The bulge has been suggested to be either a merger-driven classical bulge or the product of a dynamical instability of the inner disk. To probe the star formation history, the initial mass function and stellar nucleosynthesis of the bulge, we performed an elemental abundance analysis of bulge red giant stars. We also completed an identical study of local thin disk, thick disk and halo giants to establish the chemical differences and similarities between the various populations. High-resolution infrared spectra of 19 bulge giants and 49 comparison giants in the solar neighborhood were acquired with Gemini/Phoenix. All stars have similar stellar parameters but cover a broad range in metallicity. A standard 1D local thermodynamic equilibrium analysis yielded the abundances of C, N, O and Fe. A homogeneous and differential analysis of the bulge, halo, thin disk and thick disk stars ensured that systematic errors were minimized. We confirm the well-established differences for [O/Fe] (at a given metallicity) between the local thin and thick disks. For the elements investigated, we find no chemical distinction between the bulge and the local thick disk, which is in contrast to previous studies relying on literature values for disk dwarf stars in the solar neighborhood. Our findings suggest that the bulge and local thick disk experienced similar, but not necessarily shared, chemical evolution histories. We argue that their formation timescales, star formation rates and initial mass functions were similar.
We present C and O abundances in the Magellanic Clouds derived from deep spectra of HII regions. The data have been taken with the Ultraviolet-Visual Echelle Spectrograph at the 8.2-m VLT. The sample comprises 5 HII regions in the Large Magellanic Cl oud (LMC) and 4 in the Small Magellanic Cloud (SMC). We measure pure recombination lines (RLs) of CII and OII in all the objects, permitting to derive the abundance discrepancy factors (ADFs) for O^2+, as well as their O/H, C/H and C/O ratios. We compare the ADFs with those of other HII regions in different galaxies. The results suggest a possible metallicity dependence of the ADF for the low-metallicity objects, but more uncertain for high-metallicity objects. We compare nebular and B-type stellar abundances and we find that the stellar abundances agree better with the nebular ones derived from collisionally excited lines (CELs). Comparing these results with other galaxies we observe that stellar abundances seem to agree better with the nebular ones derived from CELs in low-metallicity environments and from RLs in high-metallicity environments. The C/H, O/H and C/O ratios show almost flat radial gradients, in contrast with the spiral galaxies where such gradients are negative. We explore the chemical evolution analysing C/O vs. O/H and comparing with the results of HII regions in other galaxies. The LMC seems to show a similar chemical evolution to the external zones of small spiral galaxies and the SMC behaves as a typical star-forming dwarf galaxy.
33 - Alvio Renzini 2001
Scaling from the empirical metal yield as measured in clusters of galaxies, it is inferred that early in the evolution of the Galaxy the bulge stellar population has produced $sim 10^9msun$ of metals, at least 5 times more than the total metal conten t of the bulge today. It is argued that an early galactic wind from the starbursting bulge has pre-enriched a vast region around it, with these metals being able to enrich to $sim 1/10$ solar of order of $5times 10^{11}msun$ of pristine material. From the empirical evidence that bulges come before disks, it is inferred that the Milky Way disk formed out of this pre-enriched material, which accounts for the scarcity of metal poor stars in the solar neighborhood, the so-called `G-Dwarf Problem. High redshift observations are now becoming able to efficiently explore the $1.2lsim zlsim 3$ region of the universe, when disk formation and morphological differentiation may have taken place.
121 - Tim Weinzirl 2008
Structural decomposition of galaxies into bulge, disk, and bar components is important to address a number of scientific problems. Measuring bulge, disk, and bar structural parameters will set constraints on the violent and secular processes of galax y assembly and recurrent bar formation and dissolution models. It can also help to quantify the fraction and properties of bulgeless galaxies (those systems having no bulge or only a relatively insignificant disky-pseudobulges), which defy galaxy formation paradigms requiring almost every disk galaxy to have a classical bulge at its core. We demonstrate a proof of concept and show early results of our ongoing three-component bulge-disk-bar decomposition of NIR images for a sample of three complementary samples spanning different epochs and different environments (field and cluster). In contrast to most early studies, which only attempt two-component bulge-disk decomposition, we fit three components using GALFIT: a bulge, a disk, and a bar. We show that it is important to include the bar component, as this can significantly lower the bulge-to-total luminosity ratio (B/T), in many cases by a factor of two or more, thus effectively changing the Hubble type of a galaxy from early to late.
We examine the possible dependence of the radial oxygen abundance distribution on non-axisymmetrical structures (bar/spirals) and other macroscopic parameters such as the mass, the optical radius R25, the color g-r, and the surface brightness of the galaxy. A sample of disk galaxies from the CALIFA DR3 is considered. We adopted the Fourier amplitude A2 of the surface brightness as a quantitative characteristic of the strength of non-axisymmetric structures in a galactic disk, in addition to the commonly used morphologic division for A, AB, and B types based on the Hubble classification. To distinguish changes in local oxygen abundance caused by the non-axisymmetrical structures, the multiparametric mass--metallicity relation was constructed as a function of parameters such as the bar/spiral pattern strength, the disk size, color index g-r in the SDSS bands, and central surface brightness of the disk. The gas-phase oxygen abundance gradient is determined by using the R calibration. We find that there is no significant impact of the non-axisymmetric structures such as a bar and/or spiral patterns on the local oxygen abundance and radial oxygen abundance gradient of disk galaxies. Galaxies with higher mass, however, exhibit flatter oxygen abundance gradients in units of dex/kpc, but this effect is significantly less prominent for the oxygen abundance gradients in units of dex/R25 and almost disappears when the inner parts are avoided. We show that the oxygen abundance in the central part of the galaxy depends neither on the optical radius R25 nor on the color g-r or the surface brightness of the galaxy. Instead, outside the central part of the galaxy, the oxygen abundance increases with g-r value and central surface brightness of the disk.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا