ﻻ يوجد ملخص باللغة العربية
Using recent precise hadronic tau-decay data on the V-A spectral function, and general properties of QCD such as analyticity, the operator product expansion and chiral perturbation theory, we get accurate values for the QCD chiral order parameters L_10^r(M_rho) and C_87^r(M_rho). These two low-energy constants appear at order p^4 and p^6, respectively, in the chiral perturbation theory expansion of the V-A correlator. At order p^4 we obtain L_10^r(M_rho) = -(5.22pm 0.06)10^{-3}. Including in the analysis the two-loop (order p^6) contributions, we get L_10^r(M_rho) = -(4.06pm 0.39)10^{-3} and C_87^r(M_rho) = (4.89pm 0.19)10^{-3}GeV^{-2}. In the SU(2) chiral effective theory, the corresponding low-energy coupling takes the value overline l_5 = 13.30 pm 0.11 at order p^4, and overline l_5 = 12.24 pm 0.21 at order p^6.
Using recent precise hadronic tau-decay data on the V-A spectral function and general properties of QCD such as analyticity, the operator product expansion and chiral perturbation theory, we get accurate values for the QCD chiral order parameters L_1
Hadronic tau decays offer the possibility of determining the strong coupling alpha_s at relatively low energy. Precisely for this reason, however, good control over the perturbative QCD corrections, the non-perturbative condensate contributions in th
We present the first three-flavor lattice QCD calculations for $Dto pi l u$ and $Dto K l u$ semileptonic decays. Simulations are carried out using ensembles of unquenched gauge fields generated by the MILC collaboration. With an improved staggered ac
Precise theoretical predictions derived from the Standard Model are a key ingredient in searches for new physics in the flavor sector. The large mass and long lifetime of the $b$ quark make processes involving $b$ quarks of particular interest. We us
We incorporate the effective restoration of $U(1)_{rm A}$ symmetry in the 2+1 flavor entanglement Polyakov-loop extended Nambu--Jona-Lasinio (EPNJL) model by introducing a temperature-dependent strength $K(T)$ to the Kobayashi-Maskawa-t Hooft (KMT) d