ترغب بنشر مسار تعليمي؟ اضغط هنا

The Resonating-Valence-Bond Ground State of Li Nanoclusters

132   0   0.0 ( 0 )
 نشر من قبل Bernardo Barbiellini
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We have performed Diffusion Quantum Monte Carlo simulations of Li clusters showing that Resonating-Valence-Bond (RVB) pairing correlations between electrons provide a substantial contribution to the cohesive energy. The RVB effects are identified in terms of electron transfers from s- to p-like character, constituting a possible explanation for the breakdown of the Fermi liquid picture observed in recent high resolution Compton scattering experiments for bulk Li.



قيم البحث

اقرأ أيضاً

A central idea in strongly correlated systems is that doping a Mott insulator leads to a superconductor by transforming the resonating valence bonds (RVBs) into spin-singlet Cooper pairs. Here, we argue that a spin-triplet RVB (tRVB) state, driven by spatially, or orbitally anisotropic ferromagnetic interactions can provide the parent state for triplet superconductivity. We apply this idea to the iron-based superconductors, arguing that strong onsite Hunds interactions develop intra-atomic tRVBs between the t$_{2g}$ orbitals. On doping, the presence of two iron atoms per unit cell allows these inter-orbital triplets to coherently delocalize onto the Fermi surface, forming a fully gapped triplet superconductor. This mechanism gives rise to a unique staggered structure of onsite pair correlations, detectable as an alternating $pi$ phase shift in a scanning tunnelling Josephson microscope.
158 - Mariapia Marchi , Sam Azadi , 2011
We apply a variational wave function capable of describing qualitatively and quantitatively the so called resonating valence bond in realistic materials, by improving standard ab initio calculations by means of quantum Monte Carlo methods. In this fr amework we clearly identify the Kekule and Dewar contributions to the chemical bond of the benzene molecule, and we establish the corresponding resonating valence bond energy of these well known structures ($simeq 0.01$eV/atom). We apply this method to unveil the nature of the chemical bond in undoped graphene and show that this picture remains only within a small resonance length of few atomic units.
The trimer resonating valence bond (tRVB) state consisting of an equal-weight superposition of trimer coverings on a square lattice is proposed. A model Hamiltonian of the Rokhsar-Kivelson type for which the tRVB becomes the exact ground state is wri tten. The state is shown to have $9^g$ topological degeneracy on genus g surface and support $Z_3$ vortex excitations. Correlation functions show exponential behavior with a very short correlation length consistent with the gapped spectrum. The classical problem of the degeneracy of trimer configurations is investigated by the transfer matrix method.
We show that the liquid-to-crystal quantum phase transition in the Rokhsar--Kivelson dimer model on the two-dimensional triangular lattice occurs as a condensation of vortex-like excitations called ``visons. This conclusion is drawn from the numerica l studies of the vison spectrum in the liquid phase by using the Greens function Monte Carlo method. We find that visons remain the lowest excitation throughout the liquid phase and that their gap decreases continuously to zero at the phase transition. The nature of the crystal phase and the second order of the phase transition are in agreement with the earlier prediction of Moessner and Sondhi [Phys. Rev. B 63, 224401 (2001)].
$Li_{2}RuO_{3}$ with a honeycomb structure undergoes a drastic transition from a regular honeycomb lattice with the $C2/m$ space group to a valence bond solid state of the $P2_{1}/m$ space group with an extremely strong dimerization at 550 K. We synt hesized $Li_{2}Ru_{1-x}Mn_{x}O_{3}$ with a full solid solution and investigated doping effects on the valence bond solid state as a function of Mn content. The valence bond solid state is found to be stable up to $x = 0.2$, based on our extensive experiments: structural studies, resistivity, and magnetic susceptibility. On the other hand, the extended x-ray absorption fine structure analyses show that the dimer local structure remains robust even above $x = 0.2$ with a minimal effect on the dimer bond length. This indicates that the locally-disordered dimer structure survives well into the Mn-rich phase even though the thermodynamically stable average structure has the $C2/m$ space group. Our results prove that the dimer formation in $Li_{2}RuO_{3}$ is predominantly a local phenomenon driven by the formation of orbitally-assisted metal-metal bonds and that these dimers are relatively robust against doping-induced disorder.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا