ترغب بنشر مسار تعليمي؟ اضغط هنا

Tree level spontaneous R-symmetry breaking in ORaifeartaigh models

128   0   0.0 ( 0 )
 نشر من قبل Zheng Sun
 تاريخ النشر 2011
  مجال البحث
والبحث باللغة English
 تأليف Zheng Sun




اسأل ChatGPT حول البحث

We show that in ORaifeartaigh models of spontaneous supersymmetry breaking, R-symmetries can be broken by non-zero values of fields at tree level, rather than by vacuum expectation values of pseudomoduli at loop level. As a complement of the recent result by Shih, we show that there must be a field in the theory with R-charge different from zero and two in order for R-symmetry breaking to occur, no matter whether the breaking happens at tree or loop level. We review the example by CDFM, and construct two types of tree level R-symmetry breaking models with a wide range of parameters and free of runaway problem. And the R-symmetry is broken everywhere on the pseudomoduli space in these models. This provides a rich set of candidates for SUSY model building and phenomenology.



قيم البحث

اقرأ أيضاً

81 - Zheng Sun , Xingyue Wei 2018
R-symmetries, which are needed for supersymmetry (SUSY) breaking in ORaifeartaigh models, often lead to SUSY runaway directions trough a complexified R-transformation. Non-R symmetries also lead to runaway directions in a similar way. This work inves tigates the occurrence of runaway directions of both SUSY and SUSY breaking types. We clarify previous issues on fractional charges and genericness, and make a refined statement on conditions for runaway directions related to either R-symmetries or non-R symmetries. We present a generic and anomaly-free model to show the existence of runaway directions related to non-R symmetries. We also comment on the possibility to combine the non-R symmetry case to the R-symmetry case by an R-charge redefinition.
In this paper we discuss a disordered $d$-dimensional Euclidean $lambdavarphi^{4}$ model. The dominant contribution to the average free energy of this system is written as a series of the replica partition functions of the model. In each replica part ition function, using the saddle-point equations and imposing the replica symmetric ansatz, we show the presence of a spontaneous symmetry breaking mechanism in the disordered model. Moreover, the leading replica partition function must be described by a large-$N$ Euclidean replica field theory. We discuss finite temperature effects considering periodic boundary condition in Euclidean time and also using the Landau-Ginzburg approach. In the low temperature regime we prove the existence of $N$ instantons in the model.
We investigate non-linear extensions of the holographic soft wall model proposed by Karch, Katz, Son and Stephanov [1] including non-minimal couplings in the five-dimensional action. The non-minimal couplings bring a new parameter $a_0$ which control s the transition between spontaneous and explicit symmetry breaking near the limit of massless quarks (the chiral limit). In the physical region (positive quark mass), we show that above a critical value of the parameter $a_0$ the chiral condensate $langle bar{q} q rangle$ is finite in the chiral limit, signifying spontaneous chiral symmetry breaking. This result is supported by the lightest states arising in the spectrum of the pseudoscalar mesons, which become massless in the chiral limit and are therefore intrepreted as Nambu-Goldstone bosons. Moreover, the decay constants of the pseudoscalar mesons also support this conclusion, as well as the Gell-Mann-Oakes-Renner (GOR) relation satisfied by the lightest states. We also calculate the spectrum of scalar, vector, and axial-vector mesons with their corresponding decay constants. We describe the evolution of masses and decay constants with the increasing of the quark mass and for the physical mass we compare our results against available experimental data. Finally, we do not find instabilities in our model for the physical region (positive quark mass).
We show how translational invariance can be broken by the vacuum that drives the spontaneous symmetry breaking of extra-dimensional extensions of the Standard Model, when delta-like interactions between brane and bulk scalar fields are present. We ex plicitly build some examples of vacuum configurations, which induce the spontaneous symmetry breaking, and have non trivial profile in the extra coordinate.
145 - Marc Gillioz 2017
A formulation of $mathcal{N} = 2$ supersymmetric Yang-Mills theory with a spacetime-dependent gauge coupling allows to study the breaking of conformal symmetry at the quantum level. The theory has an energy-momentum tensor that is only conserved if a n equation of motion for the coupling is imposed. It admits non-trivial solitons, among which the Wu-Yang monopole that can be regularized and turns out to be massless. On the other hand, the ordinary BPS monopole is only a solution in the large $N_c$ limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا