ترغب بنشر مسار تعليمي؟ اضغط هنا

Anisotropic fragmentation in low-energy dissociative recombination

332   0   0.0 ( 0 )
 نشر من قبل Steffen Novotny
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

On a dense energy grid reaching up to 75 meV electron collision energy the fragmentation angle and the kinetic energy release of neutral dissociative recombination fragments have been studied in a twin merged beam experiment. The anisotropy described by Legendre polynomials and the extracted rotational state contributions were found to vary on a likewise narrow energy scale as the rotationally averaged rate coefficient. For the first time angular dependences higher than 2$^{nd}$ order could be deduced. Moreover, a slight anisotropy at zero collision energy was observed which is caused by the flattened velocity distribution of the electron beam.



قيم البحث

اقرأ أيضاً

The dissociative recombination of the lowest rotational states of H3+ has been investigated at the storage ring TSR using a cryogenic 22-pole radiofrequency ion trap as injector. The H3+ was cooled with buffer gas at ~15 K to the lowest rotational le vels, (J,G)=(1,0) and (1,1), which belong to the ortho and para proton-spin symmetry, respectively. The rate coefficients and dissociation dynamics of H3+(J,G) populations produced with normal- and para-H2 were measured and compared to the rate and dynamics of a hot H3+ beam from a Penning source. The production of cold H3+ rotational populations was separately studied by rovibrational laser spectroscopy using chemical probing with argon around 55 K. First results indicate a ~20% relative increase of the para contribution when using para-H2 as parent gas. The H3+ rate coefficient observed for the para-H2 source gas, however, is quite similar to the H3+ rate for the normal-H2 source gas. The recombination dynamics confirm that for both source gases, only small populations of rotationally excited levels are present. The distribution of 3-body fragmentation geometries displays a broad part of various triangular shapes with an enhancement of ~12% for events with symmetric near-linear configurations. No large dependences on internal state or collision energy are found.
This paper reports results from an experimental investigation of the dissociative recombination (DR) of the helium dimer ions at the heavy-ion Test Storage Ring (TSR) in Heidelberg, observing neutral products from electron-ion collisions in a merged beams configuration at relative energies from near-zero (thermal electron energy about 10 meV) up to 40 eV.
494 - F. O. Waffeu Tamo 2011
The collision-energy resolved rate coefficient for dissociative recombination of HD+ ions in the vibrational ground state is measured using the photocathode electron target at the heavy-ion storage ring TSR. Rydberg resonances associated with ro-vibr ational excitation of the HD+ core are scanned as a function of the electron collision energy with an instrumental broadening below 1 meV in the low-energy limit. The measurement is compared to calculations using multichannel quantum defect theory, accounting for rotational structure and interactions and considering the six lowest rotational energy levels as initial ionic states. Using thermal equilibrium level populations at 300 K to approximate the experimental conditions, close correspondence between calculated and measured structures is found up to the first vibrational excitation threshold of the cations near 0.24 eV. Detailed assignments, including naturally broadened and overlapping Rydberg resonances, are performed for all structures up to 0.024 eV. Resonances from purely rotational excitation of the ion core are found to have similar strengths as those involving vibrational excitation. A dominant low-energy resonance is assigned to contributions from excited rotational states only. The results indicate strong modifications in the energy dependence of the dissociative recombination rate coefficient through the rotational excitation of the parent ions, and underline the need for studies with rotationally cold species to obtain results reflecting low-temperature ionized media.
D$_2$ molecules, excited by linearly cross-polarized femtosecond extreme ultraviolet (XUV) and near-infrared (NIR) light pulses, reveal highly structured D$^+$ ion fragment momenta and angular distributions that originate from two different 4-step di ssociative ionization pathways after four photon absorption (1 XUV + 3 NIR). We show that, even for very low dissociation kinetic energy release $le$~240~meV, specific electronic excitation pathways can be identified and isolated in the final ion momentum distributions. With the aid of {it ab initio} electronic structure and time-dependent Schrodinger equation calculations, angular momentum, energy, and parity conservation are used to identify the excited neutral molecular states and molecular orientations relative to the polarization vectors in these different photoexcitation and dissociation sequences of the neutral D$_2$ molecule and its D$_2^+$ cation. In one sequential photodissociation pathway, molecules aligned along either of the two light polarization vectors are excluded, while another pathway selects molecules aligned parallel to the light propagation direction. The evolution of the nuclear wave packet on the intermediate Bstate electronic state of the neutral D$_2$ molecule is also probed in real time.
We report on an energy-sensitive imaging detector for studying the fragmentation of polyatomic molecules in the dissociative recombination of fast molecular ions with electrons. The system is based on a large area (10 cm x 10 cm) position-sensitive, double-sided Si-strip detector with 128 horizontal and 128 vertical strips, whose pulse height information is read out individually. The setup allows to uniquely identify fragment masses and is thus capable of measuring branching ratios between different fragmentation channels, kinetic energy releases, as well as breakup geometries, as a function of the relative ion-electron energy. The properties of the detection system, which has been installed at the TSR storage ring facility of the Max-Planck Institute for Nuclear Physics in Heidelberg, is illustrated by an investigation of the dissociative recombination of the deuterated triatomic hydrogen cation D2H+. A huge isotope effect is observed when comparing the relative branching ratio between the D2+H and the HD+D channel; the ratio 2B(D2+H)/B(HD+D), which is measured to be 1.27 +/- 0.05 at relative electron-ion energies around 0 eV, is found to increase to 3.7 +/- 0.5 at ~5 eV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا