ﻻ يوجد ملخص باللغة العربية
We present and constrain a cosmological model where the only component is a pressureless fluid with bulk viscosity as an explanation for the present accelerated expansion of the universe. We study the particular model of a bulk viscosity coefficient proportional to the Hubble parameter. The model is constrained using the SNe Ia Gold 2006 sample, the Cosmic Microwave Background (CMB) shift parameter R, the Baryon Acoustic Oscillation (BAO) peak A and the Second Law of Thermodynamics (SLT). It was found that this model is in agreement with the SLT using only the SNe Ia test. However when the model is constrained using the three cosmological tests together (SNe+CMB+BAO) we found: 1.- The model violates the SLT, 2.- It predicts a value of H_0 approx 53 km sec^{-1} Mpc^{-1} for the Hubble constant, and 3.- We obtain a bad fit to data with a chi^2_{min} approx 532. These results indicate that this model is viable just if the bulk viscosity is triggered in recent times.
We explore the viability of a bulk viscous matter-dominated Universe to explain the present accelerated expansion of the Universe. The model is composed by a pressureless fluid with bulk viscosity of the form zeta = zeta_0 + zeta_1 * H where zeta_0 a
We test a cosmological model which the only component is a pressureless fluid with a constant bulk viscosity as an explanation for the present accelerated expansion of the universe. We classify all the possible scenarios for the universe predicted by
We show that the cosmic bulk viscosity estimated in our previous works is sufficient to bridge the $H_0$ value inferred from observations of the early universe with the value inferred from the local (late) universe.
We explore the cosmological implications at effective level of matter creation effects in a dissipative fluid for a FLRW geometry; we also perform a statistical analysis for this kind of model. By considering an inhomogeneous Ansatz for the particle
The intention of this paper is mainly two-fold. textit{First}, we point out a striking numerical agreement between the bulk viscosity in the lepton era calculated by Husdal (2016) and our own calculations of the present-day bulk viscosity when the fu