ﻻ يوجد ملخص باللغة العربية
The Carina Nebula (NGC 3372) is our richest nearby laboratory in which to study feedback through UV radiation and stellar winds from very massive stars during the formation of an OB association, at an early phase before SNe have disrupted the environment. This feedback is triggering new generations of star formation around the periphery of the nebula, while simultaneously evaporating the gas and dust reservoirs out of which young stars are trying to accrete. Carina is currently powered by UV radiation from 65 O-type stars and 3 WNH stars, but for most of its lifetime when its most massive star (Eta Car) was on the main-sequence, the Carina Nebula was powered by 70 O-type stars that produced an ionizing luminosity 150 times stronger than in Orion. At a distance of 2.3 kpc, Carina has the most extreme stellar populationwithin a few kpc of the Sun, and suffers little interstellar extinction. It is our best bridge between the detailed star-formation processes that can be studied in nearby regions like Orion, and much more extreme but also more distant regions like 30 Doradus. Existing observations have only begun to tap the tremendous potential of this region for understanding the importance of feedback in star formation; it will provide a reservoir of new discoveries for the next generation of large ground-based telescopes, space telescopes, and large submillimeter and radio arrays.
We have obtained wide-field thermal infrared (IR) images of the Carina Nebula, using the SPIREX/Abu telescope at the South Pole. Emission from poly-cyclic aromatic hydrocarbons (PAHs) at 3.29um, a tracer of photodissociation regions (PDRs), reveals m
Herein, we present results from observations of the 12CO (J=1-0), 13CO (J=1-0), and 12CO (J=2-1) emission lines toward the Carina nebula complex (CNC) obtained with the Mopra and NANTEN2 telescopes. We focused on massive-star-forming regions associat
The star formation triggered in dense walls of expanding shells will be discussed. The fragmentation process is studied using the linear and non-linear perturbation theory. The influence of the energy input, the ISM distribution and the speed of soun
We present a multi-wavelength study of the IR bubble G24.136+00.436. The J=1-0 observations of $^{12}$CO, $^{13}$CO and C$^{18}$O were carried out with the Purple Mountain Observatory 13.7 m telescope. Molecular gas with a velocity of 94.8 km s$^{-1}
Galaxy pairs provide a potentially powerful means of studying triggered star formation from galaxy interactions. We use a large cosmological N-body simulation coupled with a well-tested semi-analytic substructure model to demonstrate that the majorit