ترغب بنشر مسار تعليمي؟ اضغط هنا

Control of state and state entanglement with a single auxiliary subsystem

37   0   0.0 ( 0 )
 نشر من قبل Romeu Rossi Jr
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a strategy to control the evolution of a quantum system. The novel aspect of this protocol is the use of a emph{single auxiliary subsystem}. Two applications are given, one which allows for state preservation and another which controls the degree of entanglement of a given initial state.

قيم البحث

اقرأ أيضاً

We exploit a novel approximation scheme to obtain a new and compact formula for the parameters underlying coherent-state control of the evolution of a pair of entangled two-level systems. It is appropriate for long times and for relatively strong ext ernal quantum control via coherent state irradiation. We take account of both discrete-state and continuous-variable degrees of freedom. The formula predicts the relative heights of entanglement revivals and their timing and duration.
Entanglement verification and measurement is essential for experimental tests of quantum mechanics and also for quantum communication and information science. Standard methods of verifying entanglement in a bipartite mixed state require detection of both particles and involve coincidence measurement. We present a method that enables us to verify and measure entanglement in a two-photon mixed state without detecting one of the photons, i.e., without performing any coincidence measurement or postselection. We consider two identical sources, each of which can generate the same two-photon mixed state but they never emit simultaneously. We show that one can produce a set of single-photon interference patterns, which contain information about entanglement in the two-photon mixed state. We prove that it is possible to retrieve the information about entanglement from the visibility of the interference patterns. Our method reveals a distinct avenue for verifying and measuring entanglement in mixed states.
Entanglement is a fundamental feature of quantum mechanics, considered a key resource in quantum information processing. Measuring entanglement is an essential step in a wide range of applied and foundational quantum experiments. When a two-particle quantum state is not pure, standard methods to measure the entanglement require detection of both particles. We introduce a method in which detection of only one of the particles is required to characterize the entanglement of a two-particle mixed state. Our method is based on the principle of quantum interference. We use two identical sources of a two-photon mixed state and generate a set of single-photon interference patterns. The entanglement of the two-photon quantum state is characterized by the visibility of the interference patterns. Our experiment thus opens up a distinct avenue for verifying and measuring entanglement, and can allow for mixed state entanglement characterization even when one particle in the pair cannot be detected.
Conventionally, unknown quantum states are characterized using quantum-state tomography based on strong or weak measurements carried out on an ensemble of identically prepared systems. By contrast, the use of protective measurements offers the possib ility of determining quantum states from a series of weak, long measurements performed on a single system. Because the fidelity of a protectively measured quantum state is determined by the amount of state disturbance incurred during each protective measurement, it is crucial that the initial quantum state of the system is disturbed as little as possible. Here we show how to systematically minimize the state disturbance in the course of a protective measurement, thus enabling the maximization of the fidelity of the quantum-state measurement. Our approach is based on a careful tuning of the time dependence of the measurement interaction and is shown to be dramatically more effective in reducing the state disturbance than the previously considered strategy of weakening the measurement strength and increasing the measurement time. We describe a method for designing the measurement interaction such that the state disturbance exhibits polynomial decay to arbitrary order in the inverse measurement time $1/T$. We also show how one can achieve even faster, subexponential decay, and we find that it represents the smallest possible state disturbance in a protective measurement. In this way, our results show how to optimally measure the state of a single quantum system using protective measurements.
55 - S. J. Kuhn , S. McKay , J. Shen 2020
The development of direct probes of entanglement is integral to the rapidly expanding field of complex quantum materials. Here we test the robustness of entangled neutrons as a quantum probe by measuring the Clauser-Horne-Shimony-Holt contextuality w itness while varying the beam properties. Specifically, we prove that the entanglement of the spin and path subsystems of individual neutrons prepared in two different experiments using two different apparatuses persists even after varying the entanglement length, coherence length, and neutron energy difference of the paths. The two independent apparatuses acting as entangler-disentangler pairs are static-field magnetic Wollaston prisms and resonance-field radio frequency flippers. Our results show that the spatial and energy properties of the neutron beam may be significantly altered without reducing the contextuality witness value below the Tsirelson bound, meaning that maximum entanglement is preserved. We also show that two paths may be considered distinguishable even when separated by less than the neutron coherence length. This work is the key step in the realization of the new modular, robust technique of entangled neutron scattering.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا