ﻻ يوجد ملخص باللغة العربية
In this paper, we consider the back and forth nudging algorithm that has been introduced for data assimilation purposes. It consists of iteratively and alternately solving forward and backward in time the model equation, with a feedback term to the observations. We consider the case of 1-dimensional transport equations, either viscous or inviscid, linear or not (Burgers equation). Our aim is to prove some theoretical results on the convergence, and convergence properties, of this algorithm. We show that for non viscous equations (both linear transport and Burgers), the convergence of the algorithm holds under observability conditions. Convergence can also be proven for viscous linear transport equations under some strong hypothesis, but not for viscous Burgers equation. Moreover, the convergence rate is always exponential in time. We also notice that the forward and backward system of equations is well posed when no nudging term is considered.
We develop a physics-informed machine learning approach for large-scale data assimilation and parameter estimation and apply it for estimating transmissivity and hydraulic head in the two-dimensional steady-state subsurface flow model of the Hanford
In this paper we develop general formulas for the subdifferential of the pointwise supremum of convex functions, which cover and unify both the compact continuous and the non-compact non-continuous settings. From the non-continuous to the continuous
In this paper, we are interested in the estimation of Particle Size Distributions (PSDs) during a batch crystallization process in which particles of two different shapes coexist and evolve simultaneously. The PSDs are estimated thanks to a measureme
This paper considers a nudging-based scheme for data assimilation for the two-dimensional (2D) Navier-Stokes equations (NSE) with periodic boundary conditions and studies the synchronization of the signal produced by this algorithm with the true sign
Observability inequalities on lattice points are established for non-negative solutions of the heat equation with potentials in the whole space. As applications, some controllability results of heat equations are derived by the above-mentioned observability inequalities.