ترغب بنشر مسار تعليمي؟ اضغط هنا

New Calculations of Stellar Wind Torques

36   0   0.0 ( 0 )
 نشر من قبل Sean Matt
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sean P. Matt




اسأل ChatGPT حول البحث

Using numerical simulations of magnetized stellar winds, we carry out a parameter study to find the dependence of the stellar wind torque on observable parameters. We find that the power-law dependencies of the torque on parameters is significantly different than what has been used in all spin evolution models to date.

قيم البحث

اقرأ أيضاً

335 - C.J. Wareing 2018
The famous Rosette Nebula has an evacuated central cavity formed from the stellar winds ejected from the 2-6 million-year-old co-distant and co-moving central star cluster NGC 2244. However, with upper age estimates of less than 110,000 years, the ce ntral cavity is too young compared to NGC 2244 and existing models do not reproduce its properties. A new proper motion study herein using Gaia data reveals the ejection of the most massive star in the Rosette, HD46223, from NGC 2244 occurred 1.73 (+0.34,-0.25)Myr (1$sigma$ uncertainty) in the past. Assuming this ejection was at the birth of the most massive stars in NGC 2244, including the dominant centrally positioned HD46150, the age is set for the famous ionised region at more than ten times that derived for the cavity. Here, we are able to reproduce the structure of the Rosette Nebula, through simulation of mechanical stellar feedback from a 40M$_{odot}$ star in a thin sheet-like molecular cloud. We form the 135,000M$_{odot}$ cloud from thermally-unstable diffuse interstellar medium under the influence of a realistic background magnetic field with thermal/magnetic pressure equilibrium. Properties derived from a snapshot of the simulation at 1.5Myr, including cavity size, stellar age, magnetic field and resulting inclination to the line of sight, match those derived from observations. An elegant explanation is thus provided for the stark contrast in age estimates based on realistic diffuse ISM properties, molecular cloud formation and stellar wind feedback.
45 - Brian E. Wood 2018
Very recent measurements of stellar winds are used to update relations between winds and coronal activity. New wind constraints include an upper limit of Mdot<0.1 Mdot_sun for Tau Ceti (G8 V), derived from a nondetection of astrospheric H I Lyman-alp ha absorption. This upper limit is reported here for the first time, and represents the weakest wind constrained using the astrospheric absorption technique. A high mass loss rate measurement of Mdot=10 Mdot_sun for Delta Pav (G8 IV) from astrospheric Lyman-alpha absorption suggests stronger winds for subgiants than for main sequence stars of equivalent activity. A very low mass-loss rate of Mdot~0.06 Mdot_sun recently estimated for GJ 436 (M3 V) from Lyman-alpha absorption from an evaporating exoplanetary atmosphere implies inactive M dwarfs may have weak winds compared with GK dwarfs of similar activity.
Initial results are presented from 3D MHD modelling of stellar-wind bubbles around O stars moving supersonically through the ISM. We describe algorithm updates that enable high-resolution 3D MHD simulations at reasonable computational cost. We apply the methods to the simulation of the astrosphere of a rotating massive star moving with 30 km/s through the diffuse interstellar medium, for two different stellar magnetic field strengths, 10 G and 100 G. Features in the flow are described and compared with similar models for the Heliosphere. The shocked interstellar medium becomes asymmetric with the inclusion of a magnetic field misaligned with the stars direction of motion, with observable consequences. When the Alfvenic Mach number of the wind is $leq$10 then the stellar magnetic field begins to affect the structure of the wind bubble and features related to the magnetic axis of the star become visible at parsec scales. Prospects for predicting and measuring non-thermal radiation are discussed.
Mass-loss rate is one of the most important stellar parameters. We aim to provide mass-loss rates as a function of subdwarf parameters and to apply the formula for individual subdwarfs, to predict the wind terminal velocities, to estimate the influen ce of the magnetic field and X-ray ionization on the stellar wind, and to study the interaction of subdwarf wind with mass loss from Be and cool companions. We used our kinetic equilibrium (NLTE) wind models with the radiative force determined from the radiative transfer equation in the comoving frame (CMF) to predict the wind structure of subluminous hot stars. Our models solve stationary hydrodynamical equations, that is the equation of continuity, equation of motion, and energy equation and predict basic wind parameters. We predicted the wind mass-loss rate as a function of stellar parameters, namely the stellar luminosity, effective temperature, and metallicity. The derived wind parameters (mass-loss rates and terminal velocities) agree with the values derived from the observations. The radiative force is not able to accelerate the homogeneous wind for stars with low effective temperatures and high surface gravities. We discussed the properties of winds of individual subdwarfs. The X-ray irradiation may inhibit the flow in binaries with compact components. In binaries with Be components, the winds interact with the disk of the Be star. Stellar winds exist in subluminous stars with low gravities or high effective temperatures. Despite their low mass-loss rates, they are detectable in the ultraviolet spectrum and cause X-ray emission. Subdwarf stars may lose a significant part of their mass during the evolution. The angular momentum loss in magnetic subdwarfs with wind may explain their low rotational velocities. Stellar winds are especially important in binaries, where they may be accreted on a compact or cool companion. (abridged)
We use a topological framework to study descendent Gromov-Witten theory in higher genus, non-toric settings. Two geometries are considered: surfaces of general type and the Enriques Calabi-Yau threefold. We conjecture closed formulas for surfaces of general type in classes K and 2K. For the Enriques Calabi-Yau, Gromov-Witten invariants are calculated in genus 0, 1, and 2. In genus 2, the holomorphic anomaly equation is found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا