ترغب بنشر مسار تعليمي؟ اضغط هنا

Magneto-thermal properties of the spin-s Heisenberg antiferromagnet on the cuboctahedron

266   0   0.0 ( 0 )
 نشر من قبل Andreas Honecker
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use the example of the cuboctahedron, a highly frustrated molecule with 12 sites, to study the approach to the classical limit. We compute magnetic susceptibility, specific heat, and magnetic cooling rate at high magnetic fields and low temperatures for different spin quantum numbers s. Remarkably big deviations of these quantities from their classical counterparts are observed even for values of s which are usually considered to be almost classical.



قيم البحث

اقرأ أيضاً

We determine dynamical response functions of the S=1/2 Heisenberg quantum antiferromagnet on the kagome lattice based on large-scale exact diagonalizations combined with a continued fraction technique. The dynamical spin structure factor has importan t spectral weight predominantly along the boundary of the extended Brillouin zone and energy scans reveal broad response extending over a range of 2 sim 3J concomitant with pronounced intensity at lowest available energies. Dispersive features are largely absent. Dynamical singlet correlations -- which are relevant for inelastic light probes -- reveal a similar broad response, with a high intensity at low frequencies omega/J lesssim 0.2J. These low energy singlet excitations do however not seem to favor a specific valence bond crystal, but instead spread over many symmetry allowed eigenstates.
181 - T. Yavorskii , W. Apel , 2007
We study the properties of the Heisenberg antiferromagnet with spatially anisotropic nearest-neighbour exchange couplings on the kagome net, i.e. with coupling J in one lattice direction and couplings J along the other two directions. For J/J > 1, th is model is believed to describe the magnetic properties of the mineral volborthite. In the classical limit, it exhibits two kinds of ground states: a ferrimagnetic state for J/J < 1/2 and a large manifold of canted spin states for J/J > 1/2. To include quantum effects self-consistently, we investigate the Sp(N) symmetric generalisation of the original SU(2) symmetric model in the large-N limit. In addition to the dependence on the anisotropy, the Sp(N) symmetric model depends on a parameter kappa that measures the importance of quantum effects. Our numerical calculations reveal that in the kappa-J/J plane, the system shows a rich phase diagram containing a ferrimagnetic phase, an incommensurate phase, and a decoupled chain phase, the latter two with short- and long-range order. We corroborate these results by showing that the boundaries between the various phases and several other features of the Sp(N) phase diagram can be determined by analytical calculations. Finally, the application of a block-spin perturbation expansion to the trimerised version of the original spin-1/2 model leads us to suggest that in the limit of strong anisotropy, J/J >> 1, the ground state of the original model is a collinearly ordered antiferromagnet, which is separated from the incommensurate state by a quantum phase transition.
Using an approximation method for eigenvalue distribution functions, we study the temperature dependence of specific heat of the antiferromagnetic Heisenberg model on the asymmetric railroad-trestle lattice. This model contains both the sawtooth-latt ice and Majumdar-Ghosh models as special cases. Making extrapolations to the thermodynamic limit using finite size data up to 28 spins, it is found that specific heat of the Majumdar-Ghosh model has a two-peak structure in its temperature dependence and those of systems near the sawtooth-lattice point have a three-peak structure.
The spin-half pyrochlore Heisenberg antiferromagnet (PHAF) is one of the most challenging problems in the field of highly frustrated quantum magnetism. Stimulated by the seminal paper of M.~Planck [M.~Planck, Verhandl. Dtsch. phys. Ges. {bf 2}, 202-2 04 (1900)] we calculate thermodynamic properties of this model by interpolating between the low- and high-temperature behavior. For that we follow ideas developed in detail by B.~Bernu and G.~Misguich and use for the interpolation the entropy exploiting sum rules [the ``entropy method (EM)]. We complement the EM results for the specific heat, the entropy, and the susceptibility by corresponding results obtained by the finite-temperature Lanczos method (FTLM) for a finite lattice of $N=32$ sites as well as by the high-temperature expansion (HTE) data. We find that due to pronounced finite-size effects the FTLM data for $N=32$ are not representative for the infinite system below $T approx 0.7$. A similar restriction to $T gtrsim 0.7$ holds for the HTE designed for the infinite PHAF. By contrast, the EM provides reliable data for the whole temperature region for the infinite PHAF. We find evidence for a gapless spectrum leading to a power-law behavior of the specific heat at low $T$ and for a single maximum in $c(T)$ at $Tapprox 0.25$. For the susceptibility $chi(T)$ we find indications of a monotonous increase of $chi$ upon decreasing of $T$ reaching $chi_0 approx 0.1$ at $T=0$. Moreover, the EM allows to estimate the ground-state energy to $e_0approx -0.52$.
We consider the finite-temperature phase diagram of the $S = 1/2$ frustrated Heisenberg bilayer. Although this two-dimensional system may show magnetic order only at zero temperature, we demonstrate the presence of a line of finite-temperature critic al points related to the line of first-order transitions between the dimer-singlet and -triplet regimes. We show by high-precision quantum Monte Carlo simulations, which are sign-free in the fully frustrated limit, that this critical point is in the Ising universality class. At zero temperature, the continuous transition between the ordered bilayer and the dimer-singlet state terminates on the first-order line, giving a quantum critical end point, and we use tensor-network calculations to follow the first-order discontinuities in its vicinity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا