ترغب بنشر مسار تعليمي؟ اضغط هنا

Nonthermal X-Rays from Supernova Remnant G330.2+1.0 and the Characteristics of its Central Compact Object

135   0   0.0 ( 0 )
 نشر من قبل Sangwook Park
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Sangwook Park




اسأل ChatGPT حول البحث

We present results from our X-ray data analysis of the SNR G330.2+1.0 and its CCO, CXOU J160103.1--513353 (J1601). Using our XMM-Newton and Chandra observations, we find that the X-ray spectrum of J1601 can be described by neutron star atmosphere models (T ~ 2.5--3.7 MK). Assuming the distance of d ~ 5 kpc for J1601 as estimated for SNR G330.2+1.0, a small emission region of R ~ 1--2 km is implied. X-ray pulsations previously suggested by Chandra are not confirmed by the XMM-Newton data, and are likely not real. However, our timing analysis of the XMM-Newton data is limited by poor photon statistics, and thus pulsations with a relatively low amplitude (i.e., an intrinsic pulsed-fraction < 40%) cannot be ruled out. Our results indicate that J1601 is a CCO similar to that in the Cassiopeia A SNR.X-ray emission from SNR G330.2+1.0 is dominated by power law continuum (Gamma ~ 2.1--2.5) which primarily originates from thin filaments along the boundary shell. This X-ray spectrum implies synchrotron radiation from shock-accelerated electrons with an exponential roll-off frequency ~ 2--3 x 10^17 Hz. For the measured widths of the X-ray filaments (D ~ 0.3 pc) and the estimated shock velocity (v_s ~ a few x 10^3 km s^-1), a downstream magnetic field B ~ 10--50 $mu$G is derived. The estimated maximum electron energy E_max ~ 27--38 TeV suggests that G330.2+1.0 is a candidate TeV gamma-ray source. We detect faint thermal X-ray emission in G330.2+1.0. We estimate a low preshock density n_0 ~ 0.1 cm^-3, which suggests a dominant contribution from an inverse Compton mechanism (than the proton-proton collision) to the prospective gamma-ray emission. Follow-up deep radio, X-ray, and gamma-ray observations will be essential to reveal the details of the shock parameters and the nature of particle accelerations in this SNR.



قيم البحث

اقرأ أيضاً

We report new Chandra observations of one of the few Galactic supernova remnants whose X-ray spectrum is dominated by nonthermal synchrotron radiation, G330.2+1.0. We find that between 2006 and 2017, some parts of the shell have expanded by about 1%, giving a free-expansion (undecelerated) age of about 1000 yr, and implying shock velocities there of 9000 km/s for a distance of 5 kpc. Somewhat slower expansion is seen elsewhere around the remnant periphery, in particular in compact knots. Because some deceleration must have taken place, we infer that G330.2+1.0 is less than about 1000 yr old. Thus, G330.2+1.0 is one of only four Galactic core-collapse remnants of the last millennium. The large size, low brightness, and young age require a very low ambient density, suggesting expansion in a stellar-wind bubble. We suggest that in the east, where some thermal emission is seen and expansion velocities are much slower, the shock has reached the edge of the cavity. The high shock velocities can easily accelerate relativistic electrons to X-ray-emitting energies. A few small regions show highly significant brightness changes by 10% to 20%, both brightening and fading, a phenomenon previously observed in only two supernova remnants, indicating strong and/or turbulent magnetic fields.
We present a new Chandra observation of supernova remnant (SNR) G350.1-0.3. The high resolution X-ray data reveal previously unresolved filamentary structures and allow us to perform detailed spectroscopy in the diffuse regions of this SNR. Spectral analysis demonstrates that the region of brightest emission is dominated by hot, metal-rich ejecta while the ambient material along the perimeter of the ejecta region and throughout the remnants western half is mostly low-temperature, shocked interstellar/circumstellar medium (ISM/CSM) with solar-type composition. The data reveal that the emission extends far to the west of the ejecta region and imply a lower limit of 6.6 pc on the diameter of the source (at a distance of 4.5 kpc). We show that G350.1-0.3 is likely in the free expansion (ejecta-dominated) stage and calculate an age of 600-1200 years. The derived relationship between the shock velocity and the electron/proton temperature ratio is found to be entirely consistent with that of other SNRs. We perform spectral fits on the X-ray source XMMU J172054.5-372652, a candidate central compact object (CCO), and find that its spectral properties fall within the typical range of other CCOs. We also present archival 24 um data of G350.1-0.3 taken with the Spitzer Space Telescope during the MIPSGAL galactic survey and find that the infrared and X-ray morphologies are well-correlated. These results help to explain this remnants peculiar asymmetries and shed new light on its dynamics and evolution.
208 - R. P. Mignani 2007
X-ray observations have unveiled the existence of enigmatic point-like sources at the center of young (a few kyrs) supernova remnants. These sources, known as Central Compact Objects (CCOs), are thought to be neutron stars produced by the supernova e xplosion, although their X-ray phenomenology makes them markedly different from all the other young neutron stars discovered so far.The aim of this work is to search for the optical/IR counterpart of the Vela Junior CCO and to understand the nature of the associated Halpha nebula discovered by Pellizzoni et al. (2002).}{We have used deep optical (R band) and IR (J,H,Ks bands) observations recently performed by our group with the ESO VLT to obtain the first deep, high resolution images of the field with the goal of resolving the nebula structure and pinpointing a point-like source possibly associated with the neutron star.Our R-band image shows that both the nebulas flux and its structure are very similar to the Halpha ones, suggesting that the nebula spectrum is dominated by pure Halpha line emission. However, the nebula is not detected in our IR observations, whick makes it impossible to to constrain its spectrum. A faint point-like object (J>22.6, H~21.6, Ks ~ 21.4) compatible with the neutron stars Chandra X-ray position is detected in our IR images (H and Ks) but not in the optical one (R > 25.6), where it is buried by the nebula background. The nebula is most likely a bow-shock produced by the neutron star motion through the ISM or, alternatively, a photo-ionization nebula powered by UV radiation from a hot neutron star.
171 - K. A. Seo 2012
We present a short Chandra observation that confirms a previous unidentified extended X-ray source, G308.3-1.4, as a new supernova remnant (SNR) in the Milky Way. Apart from identifying its SNR nature, a bright X-ray point source has also been discov ered at the geometrical center. Its X-ray spectral properties are similar to those of a particular class of neutron star known as central compact objects (CCOs). On the other hand, the optical properties of this counterpart suggests it to be a late-type star. Together with the interesting ~ 1.4 hours X-ray periodicity found by Chandra, this system can possibly provide the first direct evidence of a compact binary survived in a supernova explosion.
59 - W.Becker , C.Y.Hui , B.Aschenbach 2006
The properties of the presumably young galactic supernova remnant (SNR) RX J0852.0-4622, discovered by ROSAT, are still uncertain. The data concerning the distance to the SNR, its age, and the presence of a compact remnant remain controversial. We re port the results of several XMM-Newton observations of CXOU J085201.4-461753, the central compact source in RX J0852.0-4622. The currently prefered interpretation of CXOU J085201.4-461753 being a neutron star is in line with our analysis. The Chandra candidate pulsation periods are not confirmed; actually no period was found down to a 3-sigma upper limit for any pulsed fraction. The spectrum of CXOU J085201.4-461753 is best described by either a two blackbody spectrum or a single blackbody spectrum with a high energy power law tail. The two blackbody temperatures of 4 MK and 6.6 MK along with the small size of the emitting regions with radii of 0.36 and 0.06 km invalidate the interpretation that the thermal radiation is cooling emission from the entire neutron star surface. The double blackbody model suggests emission from the neutron stars hot polar regions. No X-ray lines, including the emission feature previously claimed to be present in Chandra data, were found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا