ترغب بنشر مسار تعليمي؟ اضغط هنا

The Kerr/CFT Correspondence

81   0   0.0 ( 0 )
 نشر من قبل Wei Song
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Quantum gravity in the region very near the horizon of an extreme Kerr black hole (whose angular momentum and mass are related by J=GM^2) is considered. It is shown that consistent boundary conditions exist, for which the asymptotic symmetry generators form one copy of the Virasoro algebra with central charge c_L=12J / hbar. This implies that the near-horizon quantum states can be identified with those of (a chiral half of) a two-dimensional conformal field theory (CFT). Moreover, in the extreme limit, the Frolov-Thorne vacuum state reduces to a thermal density matrix with dimensionless temperature T_L=1/2pi and conjugate energy given by the zero mode generator, L_0, of the Virasoro algebra. Assuming unitarity, the Cardy formula then gives a microscopic entropy S_{micro}=2pi J / hbar for the CFT, which reproduces the macroscopic Bekenstein-Hawking entropy S_{macro}=Area / 4hbar G. The results apply to any consistent unitary quantum theory of gravity with a Kerr solution. We accordingly conjecture that extreme Kerr black holes are holographically dual to a chiral two-dimensional conformal field theory with central charge c_L=12J / hbar, and in particular that the near-extreme black hole GRS 1915+105 is approximately dual to a CFT with c_L sim 2 times 10^{79}.

قيم البحث

اقرأ أيضاً

92 - Marco Astorino 2015
The tools of Kerr/CFT correspondence are applied to the Kerr black hole embedded in an axial external magnetic field. Its extremal near horizon geometry remains a warped and twisted product of $AdS_2times S^2$. The central charge of the Virasoro alge bra, generating the asymptotic symmetries of the near horizon geometry, is found. It is used to reproduce, via the Cardy formula, the Bekenstein-Hawking entropy of the magnetised Kerr black hole as the statistical microscopic entropy of a dual CFT. The presence of the background magnetic field makes available also a second dual CFT picture, based on the $U(1)$ electromagnetic symmetry, instead of the only rotational one of the standard non-magnetised Kerr spacetime. A Meissner-like effect, where at extremality the external magnetic field is expelled out of the black hole, allows us to infer the value of the mass for these magnetised extremal black holes. The generalisation to the CFT dual for the magnetised extreme Kerr-Newman black hole is also presented.
Dynamics at large redshift near the horizon of an extreme Kerr black hole are governed by an infinite-dimensional conformal symmetry. This symmetry may be exploited to analytically, rather than numerically, compute a variety of potentially observable processes. In this paper we compute and study the conformal transformation properties of the gravitational radiation emitted by an orbiting mass in the large-redshift near-horizon region.
103 - Igor R. Klebanov 1999
We consider duality between type 0B string theory on $AdS_5times S^5$ and the planar CFT on $N$ electric D3-branes coincident with $N$ magnetic D3-branes. It has been argued that this theory is stable up to a critical value of the `t Hooft coupling b ut is unstable beyond that point. We suggest that from the gauge theory point of view the development of instability is associated with singularity in the dimension of the operator corresponding to the tachyon field via the AdS/CFT map. Such singularities are common in large $N$ theories because summation over planar graphs typically has a finite radius of convergence. Hence we expect transitions between stability and instability for string theories in AdS backgrounds that are dual to certain large $N$ gauge theories: if there are tachyons for large AdS radius then they may be stabilized by reducing the radius below a critical value of order the string scale.
The non-renormalization of the 3-point functions $tr X^{k_1} tr X^{k_2} tr X^{k_3}$ of chiral primary operators in N=4 super-Yang-Mills theory is one of the most striking facts to emerge from the AdS/CFT correspondence. A two-fold puzzle appears in t he extremal case, e.g. k_1 = k_2 + k_3. First, the supergravity calculation involves analytic continuation in the k_i variables to define the product of a vanishing bulk coupling and an infinite integral over AdS. Second, extremal correlators are uniquely sensitive to mixing of the single-trace operators $tr X^k$ with protected multi-trace operators in the same representation of SU(4). We show that the calculation of extremal correlators from supergravity is subject to the same subtlety of regularization known for the 2-point functions, and we present a careful method which justifies the analytic continuation and shows that supergravity fields couple to single traces without admixture. We also study extremal n-point functions of chiral primary operators, and argue that Type IIB supergravity requires that their space-time form is a product of n-1 two-point functions (as in the free field approximation) multiplied by a non-renormalized coefficient. This non-renormalization property of extremal n-point functions is a new prediction of the AdS/CFT correspondence. As a byproduct of this work we obtain the cubic couplings $t phi phi$ and $s phi phi$ of fields in the dilaton and 5-sphere graviton towers of Type IIB supergravity on $AdS_5 times S^5$.
80 - K.-H. Rehren 1999
The AdS-CFT correspondence is established as a re-assignment of localization to the observables which is consistent with locality and covariance.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا