ﻻ يوجد ملخص باللغة العربية
We develop the holographic renormalization of AdS_2 gravity systematically. We find that a bulk Maxwell term necessitates a boundary mass term for the gauge field and verify that this unusual term is invariant under gauge transformations that preserve the boundary conditions. We determine the energy-momentum tensor and the central charge, recovering recent results by Hartman and Strominger. We show that our expressions are consistent with dimensional reduction of the AdS_3 energy-momentum tensor and the Brown--Henneaux central charge. As an application of our results we interpret the entropy of AdS_2 black holes as the ground state entropy of a dual CFT.
Within the framework of the complexity equals action and complexity equals volume conjectures, we study the properties of holographic complexity for rotating black holes. We focus on a class of odd-dimensional equal-spinning black holes for which con
We propose a way to observe the photon ring of the asymptotically anti-de Sitter black hole dual to a superconductor on the two-dimensional sphere. We consider the electric current of the superconductor under the localized time-periodic external elec
We investigate the holographic entanglement entropy in the Rindler-AdS space-time to obtain an exact solution for the corresponding minimal surface. Moreover, the holographic entanglement entropy of the charged single accelerated AdS Black holes in f
Four-dimensional $mathcal{N}=4$ supersymmetric Yang-Mills theory, at a point on the Coulomb branch where $SU(N)$ gauge symmetry is spontaneously broken to $SU(N-1)times U(1)$, admits BPS solitons describing a spherical shell of electric and/or magnet
We propose a correspondence between an Anyon Van der Waals fluid and a (2+1) dimensional AdS black hole. Anyons are particles with intermediate statistics that interpolates between a Fermi-Dirac statistics and a Bose-Einstein one. A parameter $alpha$