ﻻ يوجد ملخص باللغة العربية
We calculated the Fresnel paraxial propagator in a birefringent plate having topological charge $q$ at its center, named $q$-plate. We studied the change of the beam transverse profile when it traverses the plate. An analytical closed form of the beam profile propagating in the $q$-plate can be found for many important specific input beam profiles. We paid particular attention to the plate having a topological unit charge and we found that if small losses due to reflection, absorption and scattering are neglected, the plate can convert the photon spin into orbital angular momentum with up to 100% efficiency, provided the thickness of the plate is less than the Rayleigh range of the incident beam.
We explore the optical properties of periodic layered media containing left-handed metamaterials. This study is based on several analogies between the propagation of light in metamaterials and charge transport in graphene. We derive the conditions fo
We report a new approach for the design and fabrication of thin wave plates with high transmission in the terahertz (THz) regime. The wave plates are based on strongly birefringent cut-wire pair metamaterials that exhibit refractive indices of opposi
Light with orbital angular momentum (OAM), or twisted light, is widely investigated in the fields of optical communications, quantum information science and nonlinear optics by harnessing its unbounded dimension. For light-matter interacting with twi
We present a formalism able to predict the transformation of light beams passing through biaxial crystals. We use this formalism to show both theoretically and experimentally the transition from double refraction to conical refraction, which is found
Nonlinear optical propagation in cholesteric liquid crystals (CLC) with a spatially periodic helical molecular structure is studied experimentally and modeled numerically. This periodic structure can be seen as a Bragg grating with a propagation stop