ترغب بنشر مسار تعليمي؟ اضغط هنا

Quantum super-cavity with atomic mirrors

273   0   0.0 ( 0 )
 نشر من قبل Lan Zhou
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study single-photon transport in an array of coupled microcavities where two two-level atomic systems are embedded in two separate cavities of the array. We find that a single-photon can be totally reflected by a single two-level system. However, two separate two-level systems can also create, between them, single-photon quasi-bound states. Therefore, a single two-level system in the cavity array can act as a mirror while a different type of cavity can be formed by using two two-level systems, acting as tunable mirrors, inside two separate cavities in the array. In analogy with superlattices in solid state, we call this new cavity inside a coupled-cavity array a super-cavity. This supercavity is the quantum analog of Fabry-Perot interferometers. Moreover, we show that the physical properties of this quantum super-cavity can be adjusted by changing the frequencies of these two-level systems.

قيم البحث

اقرأ أيضاً

We study the transmission spectra of ultracold rubidium atoms coupled to a high-finesse optical cavity. Under weak probing with pi-polarized light, the linear response of the system is that of a collective spin with multiple levels coupled to a singl e mode of the cavity. By varying the atom number, we change the collective coupling of the system. We observe the change in transmission spectra when going from a regime where the collective coupling is much smaller than the separation of the atomic levels to a regime where both are of comparable size. The observations are in good agreement with a reduced model we developed for our system.
We propose to implement the Jaynes-Cummings model by coupling a few-micrometer large atomic ensemble to a quantized cavity mode and classical laser fields. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state |e> via a non-resonant intermediate state |i>, but due to the interaction between Rydberg atoms only a single atom can be resonantly excited in the ensemble. This restricts the state space of the ensemble to the collective ground state |G> and the collectively excited state |E> with a single Rydberg excitation distributed evenly on all atoms. The collectively enhanced coupling of all atoms to the cavity field with coherent coupling strengths which are much larger than the decay rates in the system leads to the strong coupling regime of the resulting effective Jaynes-Cummings model. We use numerical simulations to show that the cavity transmission can be used to reveal detailed properties of the Jaynes-Cummings ladder of excited states, and that the atomic nonlinearity gives rise to highly non-trivial photon emission from the cavity. Finally, we suggest that the absence of interactions between remote Rydberg atoms may, due to a combinatorial effect, induce a cavity-assisted excitation blockade whose range is larger than the typical Rydberg dipole-dipole interaction length.
65 - Aurelien Dantan 2004
This paper presents a quantum mechanical treatment for both atomic and field fluctuations of an atomic ensemble interacting with propagating fields, either in Electromagnetically Induced Transparency or in a Raman situation. The atomic spin noise spe ctra and the outgoing field spectra are calculated in both situations. For suitable parameters both EIT and Raman schemes efficiently preserve the quantum state of the incident probe field in the transfer process with the atoms, although a single pass scheme is shown to be intrinsically less efficient than a cavity scheme.
We study the dynamics of a pair of atoms, resonantly interacting with a single mode cavity, in the situation where the atoms enter the cavity with a time delay between them. Using time dependent coupling functions to represent the spatial profile of the mode, we considered the adiabatic limit of the system. Although the time evolution is mostly adiabatic, energy crossings play an important role in the system dynamics. Following from this, entanglement, and a procedure for cavity state teleportation are considered. We examine the behaviour of the system when we introduce decoherence, a finite detuning, and potential asymmetries in the coupling profiles of the atoms.
Accessing distinctly quantum aspects of the interaction between light and the position of a mechanical object has been an outstanding challenge to cavity-optomechanical systems. Only cold-atom implementations of cavity optomechanics have indicated ef fects of the quantum fluctuations in the optical radiation pressure force. Here we use such a system, in which quantum photon-number fluctuations significantly drive the center of mass of an atomic ensemble inside a Fabry-Perot cavity. We show that the optomechanical response both amplifies and ponderomotively squeezes the quantum light field. We also demonstrate that classical optical fluctuations can be attenuated by 26 dB or amplified by 20 dB with a weak input pump power of < 40 pW, and characterize the optomechanical amplifiers frequency-dependent gain and phase response in both the amplitude and phase-modulation quadratures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا