ﻻ يوجد ملخص باللغة العربية
We study single-photon transport in an array of coupled microcavities where two two-level atomic systems are embedded in two separate cavities of the array. We find that a single-photon can be totally reflected by a single two-level system. However, two separate two-level systems can also create, between them, single-photon quasi-bound states. Therefore, a single two-level system in the cavity array can act as a mirror while a different type of cavity can be formed by using two two-level systems, acting as tunable mirrors, inside two separate cavities in the array. In analogy with superlattices in solid state, we call this new cavity inside a coupled-cavity array a super-cavity. This supercavity is the quantum analog of Fabry-Perot interferometers. Moreover, we show that the physical properties of this quantum super-cavity can be adjusted by changing the frequencies of these two-level systems.
We study the transmission spectra of ultracold rubidium atoms coupled to a high-finesse optical cavity. Under weak probing with pi-polarized light, the linear response of the system is that of a collective spin with multiple levels coupled to a singl
We propose to implement the Jaynes-Cummings model by coupling a few-micrometer large atomic ensemble to a quantized cavity mode and classical laser fields. A two-photon transition resonantly couples the single-atom ground state |g> to a Rydberg state
This paper presents a quantum mechanical treatment for both atomic and field fluctuations of an atomic ensemble interacting with propagating fields, either in Electromagnetically Induced Transparency or in a Raman situation. The atomic spin noise spe
We study the dynamics of a pair of atoms, resonantly interacting with a single mode cavity, in the situation where the atoms enter the cavity with a time delay between them. Using time dependent coupling functions to represent the spatial profile of
Accessing distinctly quantum aspects of the interaction between light and the position of a mechanical object has been an outstanding challenge to cavity-optomechanical systems. Only cold-atom implementations of cavity optomechanics have indicated ef