ترغب بنشر مسار تعليمي؟ اضغط هنا

Integral Field Spectroscopy of HH 262: The Spectral Atlas

162   0   0.0 ( 0 )
 نشر من قبل Robert Estalella
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

HH 262 is a group of emitting knots displaying an hour-glass morphology in the Halpha and [SII] lines, located 3.5 to the northeast of the young stellar object L1551-IRS5, in Taurus. We present new results of the kinematics and physical conditions of HH 262 based on Integral Field Spectroscopy covering a field of 1.5x3, which includes all the bright knots in HH 262. These data show complex kinematics and significant variations in physical conditions over the mapped region of HH 262 on a spatial scale of <3. A new result derived from the IFS data is the weakness of the [NII] emission (below detection limit in most of the mapped region of HH 262), including the brightest central knots. Our data reinforce the association of HH 262 with the redshifted lobe of the evolved molecular outflow L1551-IRS5. The interaction of this outflow with a younger one, powered by L1551 NE, around the position of HH 262 could give rise to the complex morphology and kinematics of HH 262.



قيم البحث

اقرأ أيضاً

HH 110 is a rather peculiar Herbig-Haro object in Orion that originates due to the deflection of another jet (HH 270) by a dense molecular clump, instead of being directly ejected from a young stellar object. Here we present new results on the kinema tics and physical conditions of HH 110 based on Integral Field Spectroscopy. The 3D spectral data cover the whole outflow extent (~4.5 arcmin, ~0.6 pc at a distance of 460 pc) in the spectral range 6500-7000 AA. We built emission-line intensity maps of H$alpha$, [NII] and [SII] and of their radial velocity channels. Furthermore, we analysed the spatial distribution of the excitation and electron density from [NII]/H$alpha$, [SII]/H$alpha$, and [SII] 6716/6731 integrated line-ratio maps, as well as their behaviour as a function of velocity, from line-ratio channel maps. Our results fully reproduce the morphology and kinematics obtained from previous imaging and long-slit data. In addition, the IFS data revealed, for the first time, the complex spatial distribution of the physical conditions (excitation and density) in the whole jet, and their behaviour as a function of the kinematics. The results here derived give further support to the more recent model simulations that involve deflection of a pulsed jet propagating in an inhomogeneous ambient medium. The IFS data give richer information than that provided by current model simulations or laboratory jet experiments. Hence, they could provide valuable clues to constrain the space parameters in future theoretical works.
74 - Tracy L. Beck 2006
We present high spatial resolution optical integral field spectroscopy of a collimated Herbig-Haro jet viewed nearly edge-on. Maps of the line emission, velocity centroid, and velocity dispersion were generated for the H$alpha$ and [S II] emission fe atures from the inner collimated jet and exciting source region of the HH 34 outflow. The kinematic structure of the jet shows several maxima and minima in both velocity centroid value and velocity dispersion along the jet axis. Perpendicular to the flow direction the velocity decreases outward from the axis to the limb of the jet, but the velocity dispersion increases. Maps of the electron density structure were derived from the line ratio of [S II] 6731/6716 emission. We have found that the jet exhibits a pronounced ``striped pattern in electron density; the high $n_e$ regions are at the leading side of each of the emission knots in the collimated jet, and low $n_e$ regions in the down-flow direction. On average, the measured electron density decreases outward from the inner regions of the jet, but the highest $n_e$ found in the outflow is spatially offset from the nominal position of the exciting star. The results of our high spatial resolution optical integral field spectroscopy show very good agreement with the kinematics and electron density structure predicted by the existing internal working surface models of the HH~34 outflow.
In this paper we present PMAS optical (3800-7200A) IFS of the northern hemisphere portion of a volume-limited sample of 11 LIRGs. The PMAS observations typically cover the central ~5kpc and are complemented with HST/NICMOS images. For most LIRGs in o ur sample, the peaks of the continuum and gas (e.g., Halpha, [NII]) emissions coincide, unlike what is observed in local, strongly interacting ULIRGs. The only exceptions are galaxies with circumnuclear rings of star formation where the most luminous Halpha emitting regions are found in the rings rather than in the nuclei, and the displacements are well understood in terms of differences in the stellar populations. A large fraction of the nuclei of these LIRGs are classified as LINER and intermediate LINER/HII, or composite objects. The excitation conditions of the integrated emission depend on the relative contributions of HII regions and the diffuse emission to the line emission over the PMAS FoV. Galaxies dominated by high surface-brightness HII regions show integrated HII-like excitation. A few galaxies show slightly larger integrated [NII]/Halpha and [SII]/Halpha line ratios than the nuclear ones, probably because of more contribution from the diffuse emission. The Halpha velocity fields over the central few kpc are generally consistent, at least to first order, with rotational motions. The velocity fields of most LIRGs are similar to those of disk galaxies, in contrast to the highly perturbed fields of most local, strongly interacting ULIRGs. The peak of the Halpha velocity dispersion coincides with the position of the nucleus and is likely to be tracing mass. All these results are similar to the properties of z~1 LIRGs, and they highlight the importance of detailed studies of flux-limited samples of local LIRGs. (Abridged)
[Abbreviated] The amount of integral field spectrograph (IFS) data has grown considerable over the last few decades. The demand for tools to analyze such data is therefore bigger now than ever. We present TDOSE; a flexible Python tool for Three Dimen sional Optimal Spectral Extraction from IFS data cubes. TDOSE works on any three-dimensional data cube and bases the spectral extractions on morphological reference image models. In each wavelength layer of the IFS data cube, TDOSE simultaneously optimizes all sources in the morphological model to minimize the difference between the scaled model components and the IFS data. The flux optimization produces individual data cubes containing the scaled three-dimensional source models. This allows for efficient de-blending of flux in both the spatial and spectral dimensions of the IFS data cubes, and extraction of the corresponding one-dimensional spectra. We present an example of how the three-dimensional source models generated by TDOSE can be used to improve two-dimensional maps of physical parameters. By extracting TDOSE spectra of $sim$150 [OII] emitters from the MUSE-Wide survey we show that the median increase in line flux is $sim$5% when using multi-component models as opposed to single-component models. However, the increase in recovered line emission in individual cases can be as much as 50%. Comparing the TDOSE model-based extractions of the MUSE-Wide [OII] emitters with aperture spectra, the TDOSE spectra provides a median flux (S/N) increase of 9% (14%). Hence, TDOSE spectra optimizes the S/N while still being able to recover the total emitted flux. TDOSE version 3.0 presented in this paper is available at https://github.com/kasperschmidt/TDOSE.
Integral-field spectroscopy is the most effective method of exploiting the superb image quality of the ESO-VLT, allowing complex astrophysical processes to be probed on the angular scales currently accessible only for imaging data, but with the addit ion of information in the spectral dimension. We discuss science drivers and requirements for multiple deployable integral fields for spectroscopy in the near-infrared. We then describe a fully modular instrument concept which can achieve such a capability over a 5-10 field with up to 32 deployable integral fields, each fully cryogenic with 1-2.5 micron coverage at a spectral resolution of ~3000, each with a 4 x 4 field of view sampled at 0.2/pixel to take advantage of the best K-band seeing.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا