ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray Cluster Normalization of the Matter Power Spectrum

395   0   0.0 ( 0 )
 نشر من قبل J. Patrick Henry
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The number density of galaxy clusters provides tight statistical constraints on the matter fluctuation power spectrum normalization, traditionally phrased in terms of sigma_8, the root mean square mass fluctuation in spheres with radius 8 h^-1 Mpc. We present constraints on sigma_8 and the total matter density Omega_m0 from local cluster counts as a function of X-ray temperature, taking care to incorporate and minimize systematic errors that plagued previous work with this method. In particular, we present new determinations of the cluster luminosity - temperature and mass - temperature relations, including their intrinsic scatter, and a determination of the Jenkins mass function parameters for the same mass definition as the mass - temperature calibration. Marginalizing over the 12 uninteresting parameters associated with this method, we find that the local cluster temperature function implies sigma_8 (Omega_m0/0.32)^alpha = 0.86+/-0.04 with alpha = 0.30 (0.41) for Omega_m0 < 0.32 (Omega_mo > 0.32) (68% confidence for two parameters). This result agrees with a wide range of recent independent determinations, and we find no evidence of any additional sources of systematic error for the X-ray cluster temperature function determination of the matter power spectrum normalization. The joint WMAP5 + cluster constraints are: Omega_m0 = 0.30+0.03/-0.02 and sigma_8 = 0.85+0.04/-0.02 (68% confidence for two parameters).



قيم البحث

اقرأ أيضاً

57 - Gustavo Yepes 2007
We present the mass and X-ray temperature functions derived from a sample of more than 15,000 galaxy clusters of the MareNostrum Universe cosmological SPH simulations. In these simulations, we follow structure formation in a cubic volume of 500/h Mpc on a side assuming cosmological parameters consistent with either the first or third year WMAP data and gaussian initial conditions. We compare our numerical predictions with the most recent observational estimates of the cluster X-ray temperature functions and find that the low normalization cosmological model inferred from the 3 year WMAP data results is barely compatible with the present epoch X-ray cluster abundances. We can only reconcile the simulations with the observational data if we assume a normalization of the Mass-Temperature relation which is a factor of 2.5--3 smaller than our non-radiative simulations predict. This deviation seems to be too large to be accounted by the effects of star formation or cooling in the ICM, not taken into account in these simulations.
We present a measure of the power spectrum on scales from 15 to 800 Mpc/h using the ROSAT-ESO Flux-Limited X-Ray(REFLEX) galaxy cluster catalogue. The REFLEX survey provides a sample of the 452 X-ray brightest southern clusters of galaxies with the n ominal flux limit S=3.0 10^{-12}erg/s/cm2 for the ROSAT energy band (0.1-2.4)keV. Several tests are performed showing no significant incompletenesses of the REFLEX clusters with X-ray luminosities brighter than 10^{43}erg/s up to scales of about 800 Mpc/h. They also indicate that cosmic variance might be more important than previous studies suggest. We regard this as a warning not to draw general cosmological conclusions from cluster samples with a size smaller than REFLEX. Power spectra, P(k), of comoving cluster number densities are estimated for flux- and volume-limited subsamples. The most important result is the detection of a broad maximum within the comoving wavenumber range 0.022<k<0.030 h/Mpc. The data suggest an increase of the power spectral amplitude with X-ray luminosity. Compared to optically selected cluster samples the REFLEX P(k)is flatter for wavenumbers k<0.05 h/Mpc thus shifting the maximum of P(k) to larger scales. The smooth maximum is not consistent with the narrow peak detected at k=0.05 h/Mpc using the Abell/ACO richness $ge 0$ data. In the range 0.02<k<0.4 h/Mpc general agreement is found between the slope of the REFLEX P(k) and those obtained with optically selected galaxies. A semi-analytic description of the biased nonlinear power spectrum in redshift space gives the best agreement for low-density Cold Dark Matter models with or without a cosmological constant.
The Karhunen-Lo{e}ve (KL) eigenvectors and eigenvalues of the sample correlation matrix are used to analyse the spatial fluctuations of the REFLEX clusters of galaxies. The method avoids the disturbing effects of correlated power spectral densities w hich affects all previous cluster measurements on Gpc scales. Comprehensive tests use a large set of independent REFLEX-like mock cluster samples extracted from the Hubble Volume Simulation. It is found that unbiased measurements on Gpc scales are possible with the REFLEX data. The distribution of the KL eigenvalues are consistent with a Gaussian random field on the 93.4% confidence level. Assuming spatially flat cold dark matter models, the marginalization of the likelihood contours over different sample volumes, fiducial cosmologies, mass/X-ray luminosity relations and baryon densities, yields the 95.4% confidence interval for the matter density of $0.03<Omega_mh^2<0.19$. The N-body simulations show that cosmic variance, although difficult to estimate, is expected to increase the confidence intervals by about 50%.
222 - R. Fusco-Femiano 1999
Hard X-ray radiation has been detected for the first time in the Coma cluster by BeppoSAX. Thanks to the unprecedented sensitivity of the Phoswich Detection System (PDS) instrument, the source has been detected up to ~80 keV. There is clear evidence (4.5 sigma) for non-thermal emission in excess of thermal above ~25 keV. The hard excess is very unlikely due to X Comae, the Seyfert 1 galaxy present in the field of view of the PDS. A hard spectral tail due to inverse Compton on CMB photons is predicted in clusters, like Coma, with radio halos. Combining the present results with radio observations, a volume-averaged intracluster magnetic field of ~0.15 micro G is derived, while the electron energy density of the emitting electrons is ~7x10**-14 erg/cm**3.
Thermal Sunyaev-Zeldovich (tSZ) effect and X-ray emission from galaxy clusters have been extensively used to constrain cosmological parameters. These constraints are highly sensitive to the relations between cluster masses and observables (tSZ and X- ray fluxes). The cross-correlation of tSZ and X-ray data is thus a powerful tool, in addition of tSZ and X-ray based analysis, to test our modeling of both tSZ and X-ray emission from galaxy clusters. We chose to explore this cross correlation as both emissions trace the hot gas in galaxy clusters and thus constitute one the easiest correlation that can be studied. We present a complete modeling of the cross correlation between tSZ effect and X-ray emission from galaxy clusters, and focuses on the dependencies with clusters scaling laws and cosmological parameters. We show that the present knowledge of cosmological parameters and scaling laws parameters leads to an uncertainties of 47% on the overall normalization of the tSZ-X cross correlation power spectrum. We present the expected signal-to-noise ratio for the tSZ-X cross-correlation angular power spectrum considering the sensitivity of actual tSZ and X-ray surveys from {it Planck}-like data and ROSAT. We demonstrate that this signal-to-noise can reach 31.5 in realistic situation, leading to a constraint on the amplitude of tSZ-X cross correlation up to 3.2%, fifteen times better than actual modeling limitations. Consequently, used in addition to other probes of cosmological parameters and scaling relations, we show that the tSZ-X is a powerful probe to constrain scaling relations and cosmological parameters.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا