ترغب بنشر مسار تعليمي؟ اضغط هنا

Constraining the nature of galaxy haloes with gravitational mesolensing of QSOs by halo substructure objects

52   0   0.0 ( 0 )
 نشر من قبل Yurij Baryshev
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Gravitational lensing of background compact objects like active galactic nuclei and quasars, by extended intermediate mass lenses such as globular clusters and and dark matter clumps with masses 10^5 - 10^8 M_sun, is considered. It is shown that observational study of the galaxy-quasars associations is a powerful direct observational test of the nature of massive galaxy haloes. Optical interferometric observations with VLTI and Keck instruments are able to constrain masses and number of substructure halo objects. Evidence of gravitational lensing by globular clusters in haloes of spiral and elliptical galaxies is presented.

قيم البحث

اقرأ أيضاً

As large-scale stellar surveys have become available over the past decade, the ability to detect and characterize substructures in the Galaxy has increased dramatically. These surveys have revealed the Triangulum-Andromeda (TriAnd) region to be rich with substructure in the distance range 20-30 kpc, and the relation of these features to each other -- if any -- remains unclear. This complex situation motivates this re-examination of the TriAnd region with a photometric and spectroscopic survey of M giants. An exploration using 2MASS photometry reveals not only the faint sequence in M giants detected by Rocha-Pinto et al. (2004) spanning the range $100^{circ}<l<160^{circ}$ and $-50^{circ}<b<-15^{circ}$ but, in addition, a second, brighter and more densely populated M giant sequence. These two sequences are likely associated with the two distinct main-sequences discovered (and labeled TriAnd1 and TriAnd2) by Martin et al. (2007) in an optical survey in the direction of M31, where TriAnd2 is the optical counterpart of the fainter RGB/AGB sequence of Rocha-Pinto et al. (2004). Here, the age, distance, and metallicity ranges for TriAnd1 and TriAnd2 are estimated by simultaneously fitting isochrones to the 2MASS RGB tracks and the optical MS/MSTO features. The two populations are clearly distinct in age and distance: the brighter sequence (TriAnd1) is younger (6-10 Gyr) and closer (distance of $sim$ 15-21 kpc), while the fainter sequence (TriAnd2) is older (10-12 Gyr) and is at an estimated distance of $sim$ 24-32 kpc. A comparison with simulations demonstrates that the differences and similarities between TriAnd1 and TriAnd2 can simultaneously be explained if they represent debris originating from the disruption of the same dwarf galaxy, but torn off during two distinct pericentric passages. [Abridged]
78 - M.J. Page 2011
There exists a significant population of broad line, z~2 QSOs which have heavily absorbed X-ray spectra. Follow up observations in the submillimetre show that these QSOs are embedded in ultraluminous starburst galaxies, unlike most unabsorbed QSOs at the same redshifts and luminosities. Here we present X-ray spectra from XMM-Newton for a sample of 5 such X-ray absorbed QSOs that have been detected at submillimetre wavelengths. We also present spectra in the restframe ultraviolet from ground based telescopes. All 5 QSOs are found to exhibit strong C IV absorption lines in their ultraviolet spectra with equivalent width > 5 Angstroms. The X-ray spectra are inconsistent with the hypothesis that these objects show normal QSO continua absorbed by low-ionization gas. Instead, the spectra can be modelled successfully with ionized absorbers, or with cold absorbers if they posess unusually flat X-ray continuum shapes and unusual optical to X-ray spectral energy distributions. We show that the ionized absorber model provides the simplest, most self-consistent explanation for their observed properties. We estimate that the fraction of radiated power that is converted into kinetic luminosity of the outflowing winds is typically ~4 per cent, in agreement with recent estimates for the kinetic feedback from QSOs required to produce the M - sigma relation, and consistent with the hypothesis that the X-ray absorbed QSOs represent the transition phase between obscured accretion and the luminous QSO phase in the evolution of massive galaxies.
74 - Carlo Giocoli 2009
We present a new algorithm for identifying the substructure within simulated dark matter haloes. The method is an extension of that proposed by Tormen et al. (2004) and Giocoli et al. (2008a), which identifies a subhalo as a group of self-bound parti cles that prior to being accreted by the main progenitor of the host halo belonged to one and the same progenitor halo (hereafter satellite). However, this definition does not account for the fact that these satellite haloes themselves may also have substructure, which thus gives rise to sub-subhaloes, etc. Our new algorithm identifies substructures at all levels of this hierarchy, and we use it to determine the mass function of all substructure (counting sub-haloes, sub-subhaloes, etc.). On average, haloes which formed more recently tend to have a larger mass fraction in substructure and to be less concentrated than average haloes of the same mass. We provide quantitative fits to these correlations. Even though our algorithm is very different from that of Gao et al. (2004), we too find that the subhalo mass function per unit mass at redshift z = 0 is universal. This universality extends to any redshift only if one accounts for the fact that host haloes of a given mass are less concentrated at higher redshifts, and concentration and substructure abundance are anti-correlated. This universality allows a simple parametrization of the subhalo mass function integrated over all host halo masses, at any given time. We provide analytic fits to this function which should be useful in halo model analyses which equate galaxies with halo substructure when interpreting clustering in large sky surveys. Finally, we discuss systematic differences in the subhalo mass function that arise from different definitions of (host) halo mass.
We have initiated a programme to study the physical/dynamical state of gas in galaxy clusters and the impact of the cluster environment on gaseous halos of individual galaxies using X-ray imaging and UV absorption line spectroscopy of background QSOs . Here we report results from the analysis Chandra and XMM-Newton archival data of five galaxy clusters with such QSOs, one of which has an archival UV spectrum. We characterize the gravitational masses and dynamical states, as well as the hot intracluster medium (ICM) properties of these clusters. Most clusters are dynamically disturbed clusters based on the X-ray morphology parameters, the X-ray temperature profiles, the large offset between X-ray peak and brightest cluster galaxy (BCG). The baryon contents in the hot ICM and stars of these clusters within $r_{500}$ are lower than the values expected from the gravitational masses, according to the standard cosmology. We also estimate column densities of the hot ICM along the sightlines toward the background QSOs as well as place upper limits on the warm-hot phase for the one sightline with existing UV observations. These column densities, compared with those of the warm and warm-hot ICM to be measured with UV absorption line spectroscopy, will enable us to probe the relationship among various gaseous phases and their connection to the heating/cooling and dynamical processes of the clusters. Furthermore, our analysis of the archival QSO spectrum probing one cluster underscores the need for high quality, targeted UV observations to robustly constrain the 10$^{5-6}$ K gas phase.
74 - Elena DOnghia 2009
We employ numerical simulations and simple analytical estimates to argue that dark matter substructures orbiting in the inner regions of the Galaxy can be efficiently destroyed by disk shocking, a dynamical process known to affect globular star clust ers. We carry out a set of fiducial high-resolution collisionless simulations in which we adiabatically grow a disk, allowing us to examine the impact of the disk on the substructure abundance. We also track the orbits of dark matter satellites in the high-resolution Aquarius simulations and analytically estimate the cumulative halo and disk shocking effect. Our calculations indicate that the presence of a disk with only 10% of the total Milky Way mass can significantly alter the mass function of substructures in the inner parts of halos. This has important implications especially for the relatively small number of satellites seen within ~30 kpc of the Milky Way center, where disk shocking is expected to reduce the substructure abundance by a factor of ~2 at 10^9 M$_{odot}$ and ~3 at 10^7 M$_{odot}$. The most massive subhalos with 10^10 M$_{odot}$ survive even in the presence of the disk. This suggests that there is no inner missing satellite problem, and calls into question whether these substructures can produce transient features in disks, like multi-armed spiral patterns. Also, the depletion of dark matter substructures through shocking on the baryonic structures of the disk and central bulge may aggravate the problem to fully account for the observed flux anomalies in gravitational lens systems, and significantly reduces the dark matter annihilation signal expected from nearby substructures in the inner halo.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا