ترغب بنشر مسار تعليمي؟ اضغط هنا

Restless quiescence: thermonuclear flashes between transient X-ray outbursts

58   0   0.0 ( 0 )
 نشر من قبل Erik Kuulkers
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English
 تأليف E. Kuulkers




اسأل ChatGPT حول البحث

For thermonuclear flashes to occur on neutron-star surfaces, fuel must have been accreted from a donor star. However, sometimes flashes are seen from transient binary systems when they are thought to be in their quiescent phase, during which no accretion, or relatively little, is expected to occur. We investigate the accretion luminosity during several such flashes, including the first-ever and brightest detected flash from Cen X-4 in 1969. We infer from observations and theory that immediately prior to these flashes the accretion rate must have been between about 0.001 and 0.01 times the equivalent of the Eddington limit, which is roughly 2 orders of magnitude less than the peak accretion rates seen in these transients during an X-ray outburst and 3-4 orders of magnitude more than the lowest measured values in quiescence. Furthermore, three such flashes, including the one from Cen X-4, occurred within 2 to 7 days followed by an X-ray outburst. A long-term episode of enhanced, but low-level, accretion is predicted near the end of the quiescent phase by the disk-instability model, and may thus have provided the right conditions for these flashes to occur. We discuss the possibility of whether these flashes acted as triggers of the outbursts, signifying a dramatic increase in the accretion rate. Although it is difficult to rule out, we find it unlikely that the irradiance by these flashes is sufficient to change the state of the accretion disk in such a dramatic way.

قيم البحث

اقرأ أيضاً

89 - C. Zurita 2015
We present deep optical images of the historical X-ray Transient KY TrA in quiescence from which we confirm the identification of the counterpart reported by Murdin (1977) and derive an improved position of alpha=15:28:16.97 and delta=-61:52:57.8. In 2007 June we obtained I, R and V images, where the counterpart seems to be double indicating the presence of an interloper at ~1.4 arcsec NW. After separating the contribution of KY TrA we calculate I=21.47+-0.09, R=22.3+-0.1 and V=23.6+-0.1. Similar brightness in the I band was measured in May 2004 and June 2010. Variability was analyzed from series of images taken in 2004, spanning 0.6 h, and in two blocks of 6 h during 2007. We find that the target is not variable in any dataset above the error levels ~0.07 mags. The presence of the interloper might explain the non-detection of the classic ellipsoidal modulation; our data indicates that it contributes around half of the total flux, which would make a variation <0.15 mags not detectable. A single spectrum obtained in 2004 May shows the H-alpha emission characteristic of X-ray transients in quiescence with a full-width-half-maximum FWHM=27000+-280 km s/s. If the system follows the FWHM -- K_2 correlation found by Casares (2015), this would correspond to a velocity semi-amplitude of the donor star of K_2=630+-74 km/s. Based on the outburst amplitude and colours of the optical counterpart in quiescence we derive a crude estimate of the orbital period of 8 h and an upper limit of 15 h which would lead to mass function estimates of ~9 M_solar and <16 M_solar respectively.
We present optical photometry and spectroscopy of the X-ray transient XTE J1859+226, obtained during outburst and its subsequent decay to quiescence. Both the X-ray and optical properties are very similar to those of well-studied black hole soft X-ra y transients. We have detected 3 minioutbursts, when XTE J1859+226 was approaching quiescence, as has been previously detected in the Soft X-Ray Transients GRO J0422+32 and GRS 1009-45. By 24 Aug 2000 the system had reached quiescence with R=22.48+/-0.07. The estimated distance to the source is ~11 kpc. Photometry taken during quiescence shows a sinusoidal modulation with a peak to peak amplitude of about 0.4 mag. A period analysis suggests that periods from 0.28 to 0.47 days are equally possible at the 68% confidence level. The amplitude of the quiescent light curve and the relatively low ratio of X-ray to optical flux, indicates that the binary inclination should be high. The measured colours during the outburst allows us to obtain the basic properties of the disc, which agrees well with irradiated disc model predictions.
176 - M. Linares 2010
We report the detection of 15 X-ray bursts with RXTE and Swift observations of the peculiar X-ray binary Circinus X-1 during its May 2010 X-ray re-brightening. These are the first X-ray bursts observed from the source after the initial discovery by T ennant and collaborators, twenty-five years ago. By studying their spectral evolution, we firmly identify nine of the bursts as type I (thermonuclear) X-ray bursts. We obtain an arcsecond location of the bursts that confirms once and for all the identification of Cir X-1 as a type I X-ray burst source, and therefore as a low magnetic field accreting neutron star. The first five bursts observed by RXTE are weak and show approximately symmetric light curves, without detectable signs of cooling along the burst decay. We discuss their possible nature. Finally, we explore a scenario to explain why Cir X-1 shows thermonuclear bursts now but not in the past, when it was extensively observed and accreting at a similar rate.
Type-I X-ray bursts arise from unstable thermonuclear burning of accreted fuel on the surface of neutron stars. In this chapter we review the fundamental physics of the burning processes, and summarise the observational, numerical, and nuclear experi mental progress over the preceding decade. We describe the current understanding of the conditions that lead to burst ignition, and the influence of the burst fuel on the observational characteristics. We provide an overview of the processes which shape the burst X-ray spectrum, including the observationally elusive discrete spectral features. We report on the studies of timing behaviour related to nuclear burning, including burst oscillations and mHz quasi-periodic oscillations. We describe the increasing role of nuclear experimental physics in the interpretation of astrophysical data and models. We survey the simulation projects that have taken place to date, and chart the increasing dialogue between modellers, observers, and nuclear experimentalists. Finally, we identify some open problems with prospects of a resolution within the timescale of the next such review.
313 - John Heise 2001
X-ray flashes are detected in the Wide Field Cameras on BeppoSAX in the energy range 2-25 keV as bright X-ray sources lasting of the order of minutes, but remaining undetected in the Gamma Ray Bursts Monitor on BeppoSAX. They have properties very sim ilar to the x-ray counterparts of GRBs and account for some of the Fast X-ray Transient events seen in almost every x-ray satellite. We review their X-ray properties and show that x-ray flashes are in fact very soft, x-ray rich, untriggered gamma ray bursts, in which the peak energy in 2-10 keV x-rays could be up to a factor of 100 larger than the peak energy in the 50-300 keV gamma ray range. The frequency is ~100 per year.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا