Generalizations of symplectic and metric structures for supermanifolds are analyzed. Two types of structures are possible according to the even/odd character of the corresponding quadratic tensors. In the even case one has a very rich set of geometri
c structures: even symplectic supermanifolds (or, equivalently, supermanifolds with non-degenerate Poisson structures), even Fedosov supermanifolds and even Riemannian supermanifolds. The existence of relations among those structures is analyzed in some details. In the odd case, we show that odd Riemannian and Fedosov supermanifolds are characterized by a scalar curvature tensor. However, odd Riemannian supermanifolds can only have constant curvature.
Higher order relations existing in normal coordinates between affine extensions of the curvature tensor and basic objects for any Fedosov supermanifolds are derived. Representation of these relations in general coordinates is discussed.
We analyze from a general perspective all possible supersymmetric generalizations of symplectic and metric structures on smooth manifolds. There are two different types of structures according to the even/odd character of the corresponding quadratic
tensors. In general we can have even/odd symplectic supermanifolds, Fedosov supermanifolds and Riemannian supermanifolds. The geometry of even Fedosov supermanifolds is strongly constrained and has to be flat. In the odd case, the scalar curvature is only constrained by Bianchi identities. However, we show that odd Riemannian supermanifolds can only have constant scalar curvature. We also point out that the supersymmetric generalizations of AdS space do not exist in the odd case.
Extension of symplectic geometry on manifolds to the supersymmetric case is considered. In the even case it leads to the even symplectic geometry (or, equivalently, to the geometry on supermanifolds endowed with a non-degenerate Poisson bracket) or t
o the geometry on an even Fedosov supermanifolds. It is proven that in the odd case there are two different scalar symplectic structures (namely, an odd closed differential 2-form and the antibracket) which can be used for construction of symplectic geometries on supermanifolds.
We prove that a Kahler supermetric on a supermanifold with one complex fermionic dimension admits a super Ricci-flat supermetric if and only if the bosonic metric has vanishing scalar curvature. As a corollary, it follows that Yaus theorem does not hold for supermanifolds.