ترغب بنشر مسار تعليمي؟ اضغط هنا

The Spitzer View of Low-Metallicity Star Formation: II. Mrk 996, a Blue Compact Dwarf Galaxy with an Extremely Dense Nucleus

200   0   0.0 ( 0 )
 نشر من قبل Yuri Izotov I.
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

(abridged) We present new Spitzer, UKIRT and MMT observations of the blue compact dwarf galaxy (BCD) Mrk 996, with an oxygen abundance of 12+log(O/H)=8.0. This galaxy has the peculiarity of possessing an extraordinarily dense nuclear star-forming region, with a central density of ~10^6 cm^{-3}. The nuclear region of Mrk 996 is characterized by several unusual properties: a very red color J-K = 1.8, broad and narrow emission-line components, and ionizing radiation as hard as 54.9 eV, as implied by the presence of the OIV 25.89 micron line. The nucleus is located within an exponential disk with colors consistent with a single stellar population of age >1 Gyr. The infrared morphology of Mrk 996 changes with wavelength. The IRS spectrum shows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with narrow line widths and equivalent widths that are high for the metallicity of Mrk 996. Gaseous nebular fine-structure lines are also seen. A CLOUDY model requires that they originate in two distinct HII regions: a very dense HII region of radius ~580 pc with densities declining from ~10^6 at the center to a few hundreds cm^{-3} at the outer radius, where most of the optical lines arise; and a HII region with a density of ~300 cm^{-3} that is hidden in the optical but seen in the MIR. We suggest that the infrared lines arise mainly in the optically obscured HII region while they are strongly suppressed by collisional deexcitation in the optically visible one. The hard ionizing radiation needed to account for the OIV 25.89 micron line is most likely due to fast radiative shocks propagating in an interstellar medium. A hidden population of Wolf-Rayet stars of type WNE-w or a hidden AGN as sources of hard ionizing radiation are less likely possibilities.



قيم البحث

اقرأ أيضاً

137 - A. Georgakakis 2010
The possibility is explored that accretion on an intermediate mass black hole contributes to the ionisation of the interstellar medium of the Compact Blue Dwarf galaxy MRK996. Chandra observations set tight upper limits (99.7 per cent confidence leve l) in both the X-ray luminosity of the posited AGN, Lx(2-10keV)<3e40erg/s, and the black hole mass, <1e4/lambda Msolar, where lambda, is the Eddington ratio. The X-ray luminosity upper limit is insufficient to explain the high ionisation line [OIV]25.89mu m, which is observed in the mid-infrared spectrum of the MRK996 and is proposed as evidence for AGN activity. This indicates that shocks associated with supernovae explosions and winds of young stars must be responsible for this line. It is also found that the properties of the diffuse X-ray emission of MRK996 are consistent with this scenario, thereby providing direct evidence for shocks that heat the galaxys interstellar medium and contribute to its ionisation.
75 - A. Paswan , A. Omar , S. Jaiswal 2017
The optical spectroscopic and radio interferometric HI 21 cm-line observations of the blue compact dwarf galaxy Mrk 22 are presented. The Wolf-Rayet (WR) emission line features corresponding to high ionization lines of HeII $lambda$4686 and CIV $lamb da$5808 from young massive stars are detected. The ages of two prominent star forming regions in the galaxy are estimated as $sim$10 Myr and $sim$ 4 Myr. The galaxy has non-thermal radio deficiency, which also indicates a young star-burst and lack of supernovae events from the current star formation activities, consistent with the detection of WR emission lines features. A significant N/O enrichment is seen in the fainter star forming region. The gas-phase metallicities [12 + log(O/H)] for the bright and faint regions are estimated as 7.98$pm$0.07 and 7.46$pm$0.09 respectively. The galaxy has a large diffuse HI envelop. The HI images reveal disturbed gas kinematics and HI clouds outside the optical extent of the galaxy, indicating recent tidal interaction or merger in the system. The results strongly indicate that Mrk 22 is undergoing a chemical and morphological evolution due to ongoing star formation, most likely triggered by a merger.
122 - L.M. Cairos 2009
We present an integral field spectroscopic study of the central 2x2 kpc^2 of the blue compact dwarf galaxy Mrk 409, observed with the Potsdam MultiAperture Spectrophotometer. This study focuses on the morphology, two-dimensional chemical abundance pa ttern, excitation properties and kinematics of the ionized interstellar medium in the starburst component. We also investigate the nature of the extended ring of ionized gas emission surrounding the bright nuclear starburst region of Mrk 409. PMAS spectra of selected regions along the ring, interpreted with evolutionary and population synthesis models, indicate that their ionized emission is mainly due to a young stellar population with a total mass of ~1.5x10^6 M_sun, which started forming almost coevally ~10 Myr ago. This stellar component is likely confined to the collisional interface of a spherically expanding, starburst-driven super-bubble with denser, swept-up ambient gas, ~600 pc away from the central starburst nucleus. The spectroscopic properties of the latter imply a large extinction (C_H-beta>0.9), and the presence of an additional non-thermal ionization source, most likely a low-luminosity Active Galactic Nucleus. Mrk 409 shows a relatively large oxygen abundance (12+log(O/H)~8.4) and no chemical abundance gradients out to R~600 pc. The ionized gas kinematics displays an overall regular rotation on a northwest-southwest axis, with a maximum velocity of 60 km/s; the total mass inside the star-forming ring is about 1.4x10^9 M_sun.
131 - L. K. Hunt 2006
We present Spitzer observations of the blue compact dwarf galaxy (BCD) Haro 3, with an oxygen abundance of 12+log(O/H)=8.32. These data are part of a larger study of star formation and dust in low-metallicity environments.The IRS spectrum of Haro 3 s hows strong narrow Polycyclic Aromatic Hydrocarbon (PAH) emission, with high equivalent widths. Gaseous nebular fine-structure lines are also seen. Despite the absence of optical high-excitation lines, a faint high-ionization [O IV] line at 25.89 micron indicates the presence of radiation as hard as 54.9 eV. A CLOUDY model suggests that the MIR lines originate in two regions: a low-extinction optically-emitting region, and an optically invisible one with much higher extinction. The morphology of Haro 3 changes with wavelength. IRAC 4.5 micron traces extended stellar photospheric emission from the body of the galaxy and hot dust continuum coming mainly from star-forming regions; 8 micron probes extended PAH emission coming mainly from the general ISM; MIPS 24 and 70 micron images map compact small-grain warm dust emission associated with active star formation, and 160 micron reflects cooler extended dust associated with older stellar populations. We have derived the optical-to-radio spectral energy distribution (SED) of the brightest star-forming region A in Haro 3. The best-fit DUSTY model of the SED gives a total luminosity of 2.8e9 Lsun and a mass of 2.8e6 Msun for the ionizing clusters. We infer an extinction A(V)<3, intermediate between the optical A(V)~0.5 and the radio A(V)~8, consistent with the picture that longer wavelength observations probe more deeply into star-forming regions.
New FUSE far-UV spectroscopy of the nearby metal-deficient (Zsun/8) cometary Blue Compact Dwarf (BCD) galaxy Markarian (Mrk) 59 is discussed. The data are used to investigate element abundances in its interstellar medium. The H I absorption lines are characterized by narrow cores which are interstellar in origin and by broad wings which are stellar in origin. The mean interstellar H I column density is ~ 7x10E20 cm-2 in Mrk 59. No H2 lines are seen and N(H2) is < 10E15 cm-2 at the 10 sigma level. The lack of diffuse H2 is due to the combined effect of a strong UV radiation field which destroys the H2 molecules and a low metallicity which leads to a scarcity of dust grains necessary for H2 formation. P-Cygni profiles of the S VI 933.4, 944.5 A and O VI 1031.9, 1037.6 A lines are seen, indicating the presence of very hot O stars and a stellar wind terminal velocity of ~ 1000 km/s. By fitting the line profiles with multiple components having each a velocity dispersion b = 7 km/s and spanning a radial velocity range of 100 km/s, some of which can be saturated, we derive heavy element abundances in the neutral gas. We find log N(O I)/N(H I) = -5.0+/-0.3 or [O I/H I] = -1.5 for the neutral gas, about a factor of 10 below the oxygen abundance of the supergiant H II region, implying self-enrichment of the latter.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا