ﻻ يوجد ملخص باللغة العربية
We present the main results of the first long-term spectrophotometric monitoring of the ``Einstein cross Q2237+0305 and of the single-epoch spectra of the lensed quasar J1131-1231. From October 2004 to December 2006, we find that two prominent microlensing events affect images A & B in Q2237+0305 while images C & D remain grossly unaffected by microlensing on a time scale of a few months. Microlensing in A & B goes with chromatic variations of the quasar continuum. We observe stronger micro-amplification in the blue than in the red part of the spectrum, as expected for continuum emission arising from a standard accretion disk. Microlensing induced variations of the CIII] emission are observed both in the integrated line intensity and profile. Finally, we also find that images C & D are about 0.1-0.3 mag redder than images A & B. The spectra of images A-B-C in J1131-1231 reveal that, in April 2003, microlensing was at work in images A and C. We find that microlensing de-amplifies the continuum emission and the Broad Line Region (BLR) in these images. Contrary to the case of Q2237+0305, we do not find evidence for chromatic microlensing of the continuum emission. On the other hand, we observe that the Balmer and MgII broad line profiles are deformed by microlensing. These deformations imply an anti-correlation between the width of the emission line and the size of the corresponding emitting region. Finally, the differential microlensing of the FeII emission suggests that the bulk of FeII is emitted in the outer parts of the BLR while another fraction of FeII is produced in a compact region.
We use the high magnification event seen in the 1999 OGLE campaign light curve of image C of the quadruply imaged gravitational lens Q2237+0305 to study the structure of the quasar engine. We have obtained g- and r-band photometry at the Apache Point
We present the results of the first long-term (2.2 years) spectroscopic monitoring of a gravitationally lensed quasar, namely the Einstein Cross Q2237+0305. We spatially deconvolve deep VLT/FORS1 spectra to accurately separate the spectrum of the l
We present the results of the first long-term (2.2 years) spectroscopic monitoring of a gravitationally lensed quasar, namely the Einstein Cross Q2237+0305. The goal of this paper is to present the observational facts to be compared in follow-up pape
We have observed the quadruply lensed quasar 1RXS J1131-1231 with the integral field spectrograph mode of the Kyoto Tridimensional Spectrograph II mounted on the Subaru telescope. Its field of view has covered simultaneously the three brighter lensed
So far the lens J1131-1231 has been studied only at optical and X-ray wavelengths. A detection in the radio was almost missed as a result of an incorrect position and archive problems. A direct analysis of NVSS uv data - in contrast to the catalogue