ترغب بنشر مسار تعليمي؟ اضغط هنا

Microlensing to probe the quasar structure: spectrophotometry of Q2237+0305 and of J1131-1231

153   0   0.0 ( 0 )
 نشر من قبل Dominique Sluse
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف D. Sluse




اسأل ChatGPT حول البحث

We present the main results of the first long-term spectrophotometric monitoring of the ``Einstein cross Q2237+0305 and of the single-epoch spectra of the lensed quasar J1131-1231. From October 2004 to December 2006, we find that two prominent microlensing events affect images A & B in Q2237+0305 while images C & D remain grossly unaffected by microlensing on a time scale of a few months. Microlensing in A & B goes with chromatic variations of the quasar continuum. We observe stronger micro-amplification in the blue than in the red part of the spectrum, as expected for continuum emission arising from a standard accretion disk. Microlensing induced variations of the CIII] emission are observed both in the integrated line intensity and profile. Finally, we also find that images C & D are about 0.1-0.3 mag redder than images A & B. The spectra of images A-B-C in J1131-1231 reveal that, in April 2003, microlensing was at work in images A and C. We find that microlensing de-amplifies the continuum emission and the Broad Line Region (BLR) in these images. Contrary to the case of Q2237+0305, we do not find evidence for chromatic microlensing of the continuum emission. On the other hand, we observe that the Balmer and MgII broad line profiles are deformed by microlensing. These deformations imply an anti-correlation between the width of the emission line and the size of the corresponding emitting region. Finally, the differential microlensing of the FeII emission suggests that the bulk of FeII is emitted in the outer parts of the BLR while another fraction of FeII is produced in a compact region.

قيم البحث

اقرأ أيضاً

89 - T. Anguita 2008
We use the high magnification event seen in the 1999 OGLE campaign light curve of image C of the quadruply imaged gravitational lens Q2237+0305 to study the structure of the quasar engine. We have obtained g- and r-band photometry at the Apache Point Observatory 3.5m telescope where we find that the event has a smaller amplitude in the r-band than in the g- and OGLE V-bands. By comparing the light curves with microlensing simulations we obtain constraints on the sizes of the quasar regions contributing to the g- and r-band flux. Assuming that most of the surface mass density in the central kiloparsec of the lensing galaxy is due to stars and by modeling the source with a Gaussian profile, we obtain for the Gaussian width 1.20 x 10^15 sqrt(M/0.1M_sun)cm < sigma_g < 7.96 x 10^15 sqrt(M/0.1Msun) cm, where M is the mean microlensing mass, and a ratio sigma_r/sigma_g=1.25^{+0.45}_{-0.15}. With the limits on the velocity of the lensing galaxy from Gil-Merino et al. (2005) as our only prior, we obtain 0.60 x 10^15 sqrt(M/0.1Msun) cm < sigma_g < 1.57 x 10^15 sqrt(M/0.1Msun) cm and a ratio sigma_r/sigma_g=1.45^{+0.90}_{-0.25} (all values at 68 percent confidence). Additionally, from our microlensing simulations we find that, during the chromatic microlensing event observed, the continuum emitting region of the quasar crossed a caustic at >72 percent confidence.
349 - A. Eigenbrod 2008
We present the results of the first long-term (2.2 years) spectroscopic monitoring of a gravitationally lensed quasar, namely the Einstein Cross Q2237+0305. We spatially deconvolve deep VLT/FORS1 spectra to accurately separate the spectrum of the l ensing galaxy from the spectra of the quasar images. Accurate cross-calibration of the observations at 31 epochs from October 2004 to December 2006 is carried out using foreground stars observed simultaneously with the quasar. The quasar spectra are further decomposed into a continuum component and several broad emission lines. We find prominent microlensing events in the quasar images A and B, while images C and D are almost quiescent on a timescale of a few months. The strongest variations are observed in the continuum, and their amplitude is larger in the blue than in the red, consistent with microlensing of an accretion disk. Variations in the intensity and profile of the broad emission lines are also reported, most prominently in the wings of the CIII] and in the center of the CIV emission lines. During a strong microlensing episode observed in quasar image A, the broad component of the CIII] is more magnified than the narrow component. In addition, the emission lines with higher ionization potentials are more magnified than the lines with lower ionization potentials, consistent with the stratification of the broad line region (BLR) infered from reverberation mapping observations.
247 - A. Eigenbrod 2008
We present the results of the first long-term (2.2 years) spectroscopic monitoring of a gravitationally lensed quasar, namely the Einstein Cross Q2237+0305. The goal of this paper is to present the observational facts to be compared in follow-up pape rs with theoretical models to constrain the inner structure of the source quasar. We spatially deconvolve deep VLT/FORS1 spectra to accurately separate the spectrum of the lensing galaxy from the spectra of the quasar images. Accurate cross-calibration of the 58 observations at 31-epoch from October 2004 to December 2006 is carried out with non-variable foreground stars observed simultaneously with the quasar. The quasar spectra are further decomposed into a continuum component and several broad emission lines to infer the variations of these spectral components. We find prominent microlensing events in the quasar images A and B, while images C and D are almost quiescent on a timescale of a few months. The strongest variations are observed in the continuum of image A. Their amplitude is larger in the blue (0.7 mag) than in the red (0.5 mag), consistent with microlensing of an accretion disk. Variations in the intensity and profile of the broad emission lines are also reported, most prominently in the wings of the CIII] and center of the CIV emission lines. During a strong microlensing episode observed in June 2006 in quasar image A, the broad component of the CIII] is more highly magnified than the narrow component. In addition, the emission lines with higher ionization potentials are more magnified than the lines with lower ionization potentials, consistent with the results obtained with reverberation mapping. Finally, we find that the V-band differential extinction by the lens, between the quasar images, is in the range 0.1-0.3 mag.
65 - H. Sugai , A. Kawai , A. Shimono 2007
We have observed the quadruply lensed quasar 1RXS J1131-1231 with the integral field spectrograph mode of the Kyoto Tridimensional Spectrograph II mounted on the Subaru telescope. Its field of view has covered simultaneously the three brighter lensed images A, B, and C, which are known to exhibit anomalous flux ratios in their continuum emission. We have found that the [OIII] line flux ratios among these lensed images are consistent with those predicted by smooth-lens models. The absence of both microlensing and millilensing effects on this [OIII] narrow line region sets important limits on the mass of any substructures along the line of sight, which is expressed as M_E < 10^5 M_solar for the mass inside an Einstein radius. In contrast, the H_beta line emission, which originates from the broad line region, shows an anomaly in the flux ratio between images B and C, i.e., a factor two smaller C/B ratio than predicted by smooth-lens models. The ratio of A/B in the H_beta line is well reproduced. We show that the anomalous C/B ratio for the H_beta line is caused most likely by micro/milli-lensing of image C. This is because other effects, such as the differential dust extinction and/or arrival time difference between images B and C, or the simultaneous lensing of another pair of images A and B, are all unlikely. In addition, we have found that the broad H_beta line of image A shows a slight asymmetry in its profile compared with those in the other images, which suggests the presence of a small microlensing effect on this line emitting region of image A.
So far the lens J1131-1231 has been studied only at optical and X-ray wavelengths. A detection in the radio was almost missed as a result of an incorrect position and archive problems. A direct analysis of NVSS uv data - in contrast to the catalogue or images alone - provided sufficient evidence of a detection to justify further radio investigations. The system was subsequently observed with MERLIN and the EVN in e-VLBI mode. Even though MERLIN seems to show the lensed star-forming regions and the compact cores, a preliminary analysis of the EVN data only shows an AGN in the lens itself but not the lensed cores. Additional VLA observations will be carried out soon.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا