ترغب بنشر مسار تعليمي؟ اضغط هنا

Large-amplitude intraday variability in QSO 1156+295 observed during a VLBI experiment

41   0   0.0 ( 0 )
 نشر من قبل Tuomas Savolainen
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present here the discovery of rapid, large amplitude intraday variability in the compact flat-spectrum radio quasar 1156+295. The detection of 40% flux density variations at 15 GHz on a timescale of only 2.7 hours was serendipitously made when the source was observed with the Very Long Baseline Array as a part of the MOJAVE survey programme on February 5, 2007. Intraday variability on timescales of a few hours or less is rare, and there exist very few sources that show large-amplitude variations on a timescale as short as what is now observed for 1156+295. The shape of the visibility function of the source changes very little during the observation, although the correlated flux density changes by 40%. This suggests that the variability occurs in a single dominant compact component. The observed variability characteristics are consistent with interstellar scintillation in nearby, highly turbulent medium. The rms amplitude of modulation at 15 GHz is unusually large and it implies a rather high scattering measure along the line-of-sight towards 1156+295.

قيم البحث

اقرأ أيضاً

We report a serendipitous detection of rapid, large amplitude flux density variations in the highly core-dominated, flat-spectrum radio quasar 1156+295 during an observing session at the Very Long Baseline Array (VLBA). The source was observed as a p art of the MOJAVE survey programme with the VLBA at 15 GHz on February 5, 2007. Large amplitude variability in the correlated flux density, unexplainable in terms of the source structure, was first discovered while processing the data, and later confirmed by calibrating the antenna gains using 24 other sources observed in the experiment. The source shows variations in the correlated flux density as high as 40% on a timescale of only 2.7 hours. This places 1156+295 between the classical IDV sources and the so-called intra-hour variables. The observed variability timescale and the modulation index of 13% are consistent with interstellar scintillation by a nearby, highly turbulent scattering screen. The large modulation index at 15 GHz implies a scattering measure that is atypically high for a high galactic latitude source such as 1156+295.
We present the results of a number of high resolution radio observations of the AGN 1156+295. These include multi-epoch and multi-frequency VLBI, VSOP, MERLIN and VLA observations made over a period of 50 months. The 5 GHz MERLIN images trace a strai ght jet extending to 2 arcsec at P.A. -18 degrees. Extended low brightness emission was detected in the MERLIN observation at 1.6 GHz and the VLA observation at 8.5 GHz with a bend of about 90 degrees at the end of the 2 arcsecond jet. A region of similar diffuse emission is also seen about 2 arcseconds south of the radio core. The VLBI images of the blazar reveal a core-jet structure with an oscillating jet on a milli-arcsecond (mas) scale which aligns with the arcsecond jet at a distance of several tens of milli-arcseconds from the core. This probably indicates that the orientation of the jet structure is close to the line of sight, with the northern jet being relativistically beamed toward us. In this scenario the diffuse emission to the north and south is not beamed and appears symmetrical. For the northern jet at the mas scale, proper motions of 13.7 +/-3.5, 10.6 +/- 2.8, and 11.8 +/- 2.8 c are measured in three distinct components of the jet (q_0=0.5, H_0=65 km /s /Mpc are used through out this paper). Highly polarised emission is detected on VLBI scales in the region in which the jet bends sharply to the north-west. The spectral index distribution of the source shows that the strongest compact component has a flat spectrum, and the extended jet has a steep spectrum. A helical trajectory along the surface of a cone was proposed based on the conservation laws for kinetic energy and momentum to explain the observed phenomena, which is in a good agreement with the observed results on scales of 1 mas to 1 arcsec.
We monitored BL Lacertae simultaneously in the optical B, V, R and I bands for 13 nights during the period 2012-2016. The variations were well correlated in all bands and the source showed significant intraday variability (IDV). We also studied its o ptical flux and colour behaviour, and searched for inter-band time lags. A strong bluer-when-brighter chromatism was found on the intra-night time-scale. The spectral changes are not sensitive to the host galaxy contribution. Cross-correlation analysis revealed possible time delay of about 10 min between variations in the V and R bands. We interpreted the observed flares in terms of the model consisting of individual synchrotron pulses.
Deriving physical parameters from gamma-ray burst afterglow observations remains a challenge, even now, 20 years after the discovery of afterglows. The main reason for the lack of progress is that the peak of the synchrotron emission is in the sub-mm range, thus requiring radio observations in conjunction with X-ray/optical/near-infrared data in order to measure the corresponding spectral slopes and consequently remove the ambiguity wrt. slow vs. fast cooling and the ordering of the characteristic frequencies. We observed GRB 151027B, the 1000th Swift-detected GRB, with GROND in the optical-NIR, ALMA in the sub-millimeter, ATCA in the radio band, and combine this with public Swift-XRT X-ray data. While some observations at crucial times only return upper limits or surprising features, the fireball model is narrowly constrained by our data set, and allows us to draw a consistent picture with a fully-determined parameter set. Surprisingly, we find rapid, large-amplitude flux density variations in the radio band which are extreme not only for GRBs, but generally for any radio source. We interpret these as scintillation effects, though the extreme nature requires either the scattering screen to be at much smaller distance than usually assumed, multiple screens, or a combination of the two.
80 - J. Heidt , S.J. Wagner 1997
We present a study of the intraday variability behaviour of two samples of x-ray selected BL Lac objects, the EMSS and EXOSAT samples consisting of 22 and 11 sources, respectively. In both samples we were able to detect intraday variability in less t han 40% of the sources only. The duty cycle (the fraction of time, when a BL Lac object is variable) in x-ray selected BL Lac objects is 0.4 or less. The typical peak-to-peak amplitudes of the variability are 10%. Typical time-scales and an activity parameter for our variable BL Lac objects were inferred from structure function and autocorrelation function analyses. In only 4 BL Lac objects we were able to measure a characteristic time-scale, which was in the range between 1.3 and 2.7 days. Comparison with our previous study of a complete sample of radio-selected BL Lac objects from the 1 Jy catalogue shows that x-ray and radio-selected BL Lac objects differ in their duty cycle by a factor of 2 and the typical peak-to-peak amplitudes by a factor of 3. The observed time-scales are similar. We also found that the same mechanism may be responsible for the observed variability in the x-ray selected and radio-selected BL Lac objects. The expectations of the various schemes linking x-ray selected and radio-selected BL Lac objects have been compared to our observations. Consistency is found for a scenario, where x-ray selected BL Lac objects have on average stronger magnetic fields and are seen under relatively larger viewing angles than the radio-selected BL Lac objects. However, the suggestion that x-ray selected BL Lac objects have decelerating jets and radio-selected BL Lac objects accelerating jets can also not be ruled out.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا