ترغب بنشر مسار تعليمي؟ اضغط هنا

An analysis of the possible thermal emission at radio frequencies from an evolved supernova remnant HB 3 (G132.7 + 1.3): revisited

47   0   0.0 ( 0 )
 نشر من قبل Du\\v{s}an Oni\\'c donic
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

It has recently been reported that some of the flux density values for an evolved supernova remnant (SNR) HB 3 (G132.7 + 1.3) are not accurate. In this work we revised an analysis of the possible thermal emission at radio frequencies from the SNR HB 3 using the recently published, corrected, flux density values. A model including a sum of non-thermal (purely synchrotron) and thermal (bremsstrahlung) component is applied for fitting integrated radio spectrum of the SNR. The contribution of thermal component in total volume emissivity at $1 mathrm{GHz}$ was estimated to be $approx37 %$. The ambient density was also estimated to be $napprox 9 mathrm{cm}^{-3}$ for the $mathrm{T}=10^{4} mathrm{K}$. Again, we obtained the relatively significant presence of thermal emission at radio frequencies from the SNR so we could support interaction between SNR HB 3 and adjacent molecular cloud associated with the H {sc ii} region W3. Our model estimates for thermal component contribution to total volume emissivity at $1 mathrm{GHz}$ and ambient density are similar to those obtained earlier ($approx40 %$, $approx10 mathrm{cm^{-3}}$). It is clear that the corrected flux density values do not change the basic conclusions.

قيم البحث

اقرأ أيضاً

We present the results of a spectral analysis of the central region of the mixed-morphology supernova remnant HB 9. A prior Ginga observation of this source detected a hard X-ray component above 4 keV and the origin of this particular X-ray component is still unknown. Our results demonstrate that the extracted X-ray spectra are best represented by a model consisting of a collisional ionization equilibrium plasma with a temperature of ~0.1-0.2 keV (interstellar matter component) and an ionizing plasma with a temperature of ~0.6-0.7 keV and an ionization timescale of >1 x 10^{11} cm^{-3} s (ejecta component). No significant X-ray emission was found in the central region above 4 keV. The recombining plasma model reported by a previous work does not explain our spectra.
We present the detections of shocked molecular hydrogen (H2) gas in near- and mid-infrared and broad CO in millimeter from the mixed-morphology supernova remnant (SNR) HB~3 (G132.7+1.3) using Palomar WIRC, the Spitzer GLIMPSE360 and WISE surveys, and HHSMT. Our near-infrared narrow-band filter H2 2.12 micron images of HB~3 show that both Spitzer IRAC and WISE 4.6 micron emission originates from shocked H2 gas. The morphology of H2 exhibits thin filamentary structures and a large scale of interaction sites between the HB~3 and nearby molecular clouds. Half of HB~3, the southern and eastern shell of the SNR, emits H2 in a shape of a butterfly or W, indicating the interaction sites between the SNR and dense molecular clouds. Interestingly, the H2 emitting region in the southeast is also co-spatial to the interacting area between HB~3 and the H~II regions of the W3 complex, where we identified star-forming activity. We further explore the interaction between HB~3 and dense molecular clouds with detections of broad CO(3-2) and CO(2-1) molecular lines from the southern and southeastern shells along the H2 emitting region. The widths of the broad lines are 8-20 km/s; the detection of such broad lines is unambiguous, dynamic evidence of the interactions between the SNR and clouds. The CO broad lines are from two branches of the bright, southern H2 shell. We apply the Paris-Durham shock model to the CO line profiles, which infer the shock velocities of 20 - 40 km/s, relatively low densities of 10^{3-4} cm^{-3} and strong (>200 micro Gauss) magnetic fields.
Supernova remnants (SNRs) are widely considered to be sites of Galactic cosmic ray (CR) acceleration. Vela is one of the nearest Galactic composite SNRs to Earth accompanied by the Vela pulsar and its pulsar wind nebula (PWN) Vela X. The Vela SNR is one of the most studied remnants and it benefits from precise estimates of various physical parameters such as distance and age. Therefore, it is a perfect object for a detailed study of physical processes in SNRs. The Vela SNR expands into the highly inhomogeneous cloudy interstellar medium (ISM) and its dynamics is determined by the heating and evaporation of ISM clouds. It features an asymmetrical X-ray morphology which is explained by the expansion into two media with different densities. This could occur if the progenitor of the Vela SNR exploded close to the edge of the stellar wind bubble of the nearby Wolf-Rayet star $gamma^2$Velorum and hence one part of the remnant expands into the bubble. The interaction of the ejecta and the main shock of the remnant with ISM clouds causes formation of secondary shocks at which additional particle acceleration takes place. This may lead to the close to uniform distribution of relativistic particles inside the remnant. We calculate the synchrotron radio emission within the framework of the new hydrodynamical model which assumes the supernova explosion at the edge of the stellar wind bubble. The simulated radio emission agrees well with both the total radio flux from the remnant and the complicated radio morphology of the source.
We simulate the evolution of supernova remnant (SNR) W51C. The simulation shows the existence of a new northeast edge. We present magnetic field structure of the W51 complex (SNR W51C and two HII regions W51A/B) by employing the 11 cm survey data of Effelsberg. This new edge is identified and overlaps with W51A along the line of sight, which gives a new angular diameter of about 37 for the quasi-circular remnant. In addition, we assemble the OH spectral lines (1612/1665/1720 MHz) towards the complex by employing the newly released THOR (The HI OH Recombination line survey of Milky Way) data. We find that the known 1720 MHz OH maser in the W51B/C overlap area is located away from the detected 1612/1665MHz absorption region. The latter is sitting at the peak of the HII region G49.2-0.35 within W51B.
Dark matter annihilations in the Galactic halo inject relativistic electrons and positrons which in turn generate a synchrotron radiation when interacting with the galactic magnetic field. We calculate the synchrotron flux for various dark matter ann ihilation channels, masses, and astrophysical assumptions in the low-frequency range and compare our results with radio surveys from 22 MHz to 1420 MHz. We find that current observations are able to constrain particle dark matter with thermal annihilation cross-sections, i.e. (sigma v) = 3 x 10^-26 cm^3/s, and masses M_DM < 10 GeV. We discuss the dependence of these bounds on the astrophysical assumptions, namely galactic dark matter distribution, cosmic rays propagation parameters, and structure of the galactic magnetic field. Prospects for detection in future radio surveys are outlined.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا