ﻻ يوجد ملخص باللغة العربية
All known stationary black hole solutions in higher dimensions possess additional rotational symmetries in addition to the stationary Killing field. Also, for all known stationary solutions, the event horizon is a Killing horizon, and the surface gravity is constant. In the case of non-degenerate horizons (non-extremal black holes), a general theorem was previously established [gr-qc/0605106] proving that these statements are in fact generally true under the assumption that the spacetime is analytic, and that the metric satisfies Einsteins equation. Here, we extend the analysis to the case of degenerate (extremal) black holes. It is shown that the theorem still holds true if the vector of angular velocities of the horizon satisfies a certain diophantine condition, which holds except for a set of measure zero.
We prove a uniqueness theorem for stationary $D$-dimensional Kaluza-Klein black holes with $D-2$ Killing fields, generating the symmetry group ${mathbb R} times U(1)^{D-3}$. It is shown that the topology and metric of such black holes is uniquely det
We review the properties of static, higher dimensional black hole solutions in theories where non-abelian gauge fields are minimally coupled to gravity. It is shown that black holes with hyperspherically symmetric horizon topology do not exist in $d
We compute the gravitational wave energy $E_{rm rad}$ radiated in head-on collisions of equal-mass, nonspinning black holes in up to $D=8$ dimensional asymptotically flat spacetimes for boost velocities $v$ up to about $90,%$ of the speed of light. W
We consider a gravitating system consisting of a scalar field minimally coupled to gravity with a self-interacting potential and an U(1) electromagnetic field. Solving the coupled Einstein-Maxwell-scalar system we find exact hairy charged black hole
After a brief summary of the basic properties of stationary spacetimes representing rotating, charged black holes in strong axisymmetric magnetic fields, we concentrate on extremal cases, for which the horizon surface gravity vanishes. We investigate