ترغب بنشر مسار تعليمي؟ اضغط هنا

Mapping the QCD Phase Transition with Accreting Compact Stars

39   0   0.0 ( 0 )
 نشر من قبل David Blaschke
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف David Blaschke




اسأل ChatGPT حول البحث

We discuss an idea for how accreting millisecond pulsars could contribute to the understanding of the QCD phase transition in the high-density nuclear matter equation of state (EoS). It is based on two ingredients, the first one being a ``phase diagram of rapidly rotating compact star configurations in the plane of spin frequency and mass, determined with state-of-the-art hybrid equations of state, allowing for a transition to color superconducting quark matter. The second is the study of spin-up and accretion evolution in this phase diagram. We show that the quark matter phase transition leads to a characteristic line in the Omega-M plane, the phase border between neutron stars and hybrid stars with a quark matter core. Along this line a change in the pulsars moment of inertia entails a waiting point phenomenon in the accreting millisecond X-ray pulsar (AMXP) evolution: most of these objects should therefore be found along the phase border in the Omega-M plane, which may be viewed as the AMXP analog of the main sequence in the Hertzsprung-Russell diagram for normal stars. In order to prove the existence of a high-density phase transition in the cores of compact stars we need population statistics for AMXPs with sufficiently accurate determination of their masses and spin frequencies.

قيم البحث

اقرأ أيضاً

Compact stars may contain quark matter in their interiors at densities exceeding several times the nuclear saturation density. We explore models of such compact stars where there are two first-order phase transitions: the first from nuclear matter to a quark-matter phase, followed at higher density by another first-order transition to a different quark matter phase [e.g., from the two-flavor color superconducting (2SC) to the color-flavor-locked (CFL) phase). We show that this can give rise to two separate branches of hybrid stars, separated from each other and from the nuclear branch by instability regions and, therefore, to a new family of compact stars, denser than the ordinary hybrid stars. In a range of parameters, one may obtain twin hybrid stars (hybrid stars with the same masses but different radii) and even triplets where three stars, with inner cores of nuclear matter, 2SC matter, and CFL matter, respectively, all have the same mass but different radii.
In this proceeding, the deep Convolutional Neural Networks (CNNs) are deployed to recognize the order of QCD phase transition and predict the dynamical parameters in Langevin processes. To overcome the intrinsic randomness existed in a stochastic pro cess, we treat the final spectra as image-type inputs which preserve sufficient spatiotemporal correlations. As a practical example, we demonstrate this paradigm for the scalar condensation in QCD matter near the critical point, in which the order parameter of chiral phase transition can be characterized in a $1+1$-dimensional Langevin equation for $sigma$ field. The well-trained CNNs accurately classify the first-order phase transition and crossover from $sigma$ field configurations with fluctuations, in which the noise does not impair the performance of the recognition. In reconstructing the dynamics, we demonstrate it is robust to extract the damping coefficients $eta$ from the intricate field configurations.
We report on the first lattice calculation of the QCD phase transition using chiral fermions at physical values of the quark masses. This calculation uses 2+1 quark flavors, spatial volumes between (4 fm$)^3$ and (11 fm$)^3$ and temperatures between 139 and 196 MeV . Each temperature was calculated using a single lattice spacing corresponding to a temporal Euclidean extent of $N_t=8$. The disconnected chiral susceptibility, $chi_{rm disc}$ shows a pronounced peak whose position and height depend sensitively on the quark mass. We find no metastability in the region of the peak and a peak height which does not change when a 5 fm spatial extent is increased to 10 fm. Each result is strong evidence that the QCD ``phase transition is not first order but a continuous cross-over for $m_pi=135$ MeV. The peak location determines a pseudo-critical temperature $T_c = 155(1)(8)$ MeV. Chiral $SU(2)_Ltimes SU(2)_R$ symmetry is fully restored above 164 MeV, but anomalous $U(1)_A$ symmetry breaking is non-zero above $T_c$ and vanishes as $T$ is increased to 196 MeV.
The QCD phase diagram might exhibit a first order phase transition for large baryochemical potentials. We explore the cosmological implications of such a QCD phase transition in the early universe. We propose that the large baryon-asymmetry is dilute d by a little inflation where the universe is trapped in a false vacuum state of QCD. The little inflation is stopped by bubble nucleation which leads to primordial production of the seeds of extragalactic magnetic fields, primordial black holes and gravitational waves. In addition the power spectrum of cold dark matter can be affected up to mass scales of a billion solar masses. The imprints of the cosmological QCD phase transition on the gravitational wave background can be explored with the future gravitational wave detectors LISA and BBO and with pulsar timing.
In the framework of a holographic QCD approach we study an influence of matters on the deconfinement temperature, $T_c$. We first consider quark flavor number ($N_f$) dependence of $T_c$. We observe that $T_c$ decreases with $N_f$, which is consisten t with a lattice QCD result. We also delve into how the quark number density $rho_q$ affects the value of $T_c$. We find that $T_c$ drops with increasing $rho_q$. In both cases, we confirm that the contributions from quarks are suppressed by $1/N_c$, as it should be, compared to the ones from a gravitational action (pure Yang-Mills).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا