ﻻ يوجد ملخص باللغة العربية
A connection is established between discrete stochastic model describing microscopic motion of fluctuating cells, and macroscopic equations describing dynamics of cellular density. Cells move towards chemical gradient (process called chemotaxis) with their shapes randomly fluctuating. Nonlinear diffusion equation is derived from microscopic dynamics in dimensions one and two using excluded volume approach. Nonlinear diffusion coefficient depends on cellular volume fraction and it is demonstrated to prevent collapse of cellular density. A very good agreement is shown between Monte Carlo simulations of the microscopic Cellular Potts Model and numerical solutions of the macroscopic equations for relatively large cellular volume fractions. Combination of microscopic and macroscopic models were used to simulate growth of structures similar to early vascular networks.
Even in the steady-state, the number of biomolecules in living cells fluctuates dynamically; and the frequency spectrum of this chemical fluctuation carries valuable information about the mechanism and the dynamics of the intracellular reactions crea
Herewith we discuss a network model of the ferroptosis avascular and vascular tumor growth based on our previous proposed framework. Chiefly, ferroptosis should be viewed as a first order phase transition characterized by a supercritical Andronov Hop
Periodic reversals of the direction of motion in systems of self-propelled rod shaped bacteria enable them to effectively resolve traffic jams formed during swarming and maximize their swarming rate. In this paper, a connection is found between a mic
Contact between particles and motile cells underpins a wide variety of biological processes, from nutrient capture and ligand binding, to grazing, viral infection and cell-cell communication. The window of opportunity for these interactions is ultima
In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limi