ﻻ يوجد ملخص باللغة العربية
We illustrate some of the preliminary results obtained with a new sample of flares and a new analysis. In these proceedings we deal mainly with the analysis related to the flare energy and describe the work in progress to measure the average flare luminosity curve. We discuss in brief GRB050904 and GRB050724 for matters relevant to this work. In particular we measure the contribution given to the flares by GRB050904 and give a new interpretation for the decaying early XRT light curve of GRB050724. We briefly illustrate the first evidence that the early decay is given by the subsequent emission of events with Width/TPeak < 1 and the total energy of these events is larger than the energy emitted during the prompt emission spike showing, indeed, that not only the central engine may still be active after hundreds of seconds of the first spike but that this may still be part of the prompt emission.
We present predictions of centimeter and millimeter radio emission from reverse shocks in the early afterglows of gamma-ray bursts with the goal of determining their detectability with current and future radio facilities. Using a range of GRB propert
Swift-XRT observations of the X-ray emission from gamma ray bursts (GRBs) and during the GRB afterglow have led to many new results during the past two years. One of these exciting results is that approximately 1/3-1/2 of GRBs contain detectable X-ra
Previously detected in only a few gamma-ray bursts (GRBs), X-ray flares are now observed in ~50% of Swift GRBs, though their origins remain unclear. Most flares are seen early on in the afterglow decay, while some bursts exhibit flares at late times
The detection of flares with the Swift satellite triggered a lot of bservational and theoretical interest in these phenomena. As a consequence a large analysis effort started within the community to characterize the phenomenon and at the same time a
Afterglows of gamma-ray bursts often show flares, plateaus, and sudden intensity drops: these temporal features are difficult to explain as coming from the forward shock. We calculate radiative properties of early GRB afterglows with the dominant con