ﻻ يوجد ملخص باللغة العربية
The inconsistencies involved in the foundation of set theory were invariably caused by infinity and self-reference; and only with the opportune axiomatic restrictions could them be obviated. Throughout history, both concepts have proved to be an exhaustible source of paradoxes and contradictions. It seems therefore legitimate to pose some questions concerning their formal consistency. This is just the objective of this paper. Starting from an extension of Cantors paradox that suggests the inconsistency of the actual infinity, the paper makes a short review of its controversial history and proposes a new way of criticism based on w-order. Self-reference is also examined from a critique perspective which includes syntactic and semantic considerations. The critique affects the formal sentence involved in Godels first incompleteness theorem and its ordinary language interpretation.
This paper examines the possibilities of extending Cantors two arguments on the uncountable nature of the set of real numbers to one of its proper denumerable subsets: the set of rational numbers. The paper proves that, unless certain restrictive con
It is established that any homeomorphism between two closed negligible subset of $D^tau$ can be extended to an autohomeomorphism of $D^tau$.
We introduce a topological object, called hairy Cantor set, which in many ways enjoys the universal features of objects like Jordan curve, Cantor set, Cantor bouquet, hairy Jordan curve, etc. We give an axiomatic characterisation of hairy Cantor sets
A nilpotent Cantor action is a minimal equicontinuous action $Phi colon Gamma times frak{X} to frak{X}$ on a Cantor set $frak{X}$, where $Gamma$ contains a finitely-generated nilpotent subgroup $Gamma_0 subset Gamma$ of finite index. In this note, we
In this paper, we consider minimal equicontinuous actions of discrete countably generated groups on Cantor sets, obtained from the arboreal representations of absolute Galois groups of fields. In particular, we study the asymptotic discriminant of th