ترغب بنشر مسار تعليمي؟ اضغط هنا

Alignment of Galaxies and Clusters

39   0   0.0 ( 0 )
 نشر من قبل Yasuhiro Hashimoto
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We investigated the influence of environment on cluster galaxies by examining the alignment of the brightest cluster galaxy (BCG) position angle with respect to the host cluster X-ray position angle. The cluster position angles were measured using high spatial resolution X-ray data taken from the Chandra ACIS archive, that significantly improved the determination of the cluster shape compared to the conventional method of using optical images. Meanwhile, those of the BCGs were measured using homogeneous dataset composed of high spatial resolution optical images taken with Suprime-Cam mounted on Subaru 8m telescope. We found a strong indication of an alignment between the cluster X-ray emission and optical light from BCGs, while we see no clear direct correlation between the degree of ellipticity of X-ray and optical BCG morphologies, despite the apparent alignment of two elliptical structures. We have also investigated possible dependence of the position angle alignment on the X-ray morphology of the clusters, and no clear trends are found. The fact that no trends are evident regarding frequency or degree of the alignment with respect to X-ray morphology may be consistent with an interpretation as a lack of dependence on the dynamical status of clusters.

قيم البحث

اقرأ أيضاً

We explore the distribution of position angles (PA) of galaxies in clusters. We selected for study the isolated clusters, since the distribution of the galaxy orientation in clusters with close neighbors could be altered by gravitational influence of the latter. We assume that galaxies are aligned, if their number at one $90^o$ position angle interval is more than twice higher than at the other $90^o$ interval. We study the galaxy PA distribution at the outer regions of clusters with smaller space density, where the probability of the PA variation in the result of interactions between galaxies is smaller than at the dense central regions. We found that the alignment of galaxies is more often observed in poor clusters and concluded that originally galaxies were aligned, but in the result of accretion in time of field galaxies with arbitrary orientations and also due to the mutual interactions the relative number of aligned galaxies decreases.
We examine the alignment between Brightest Cluster Galaxies (BCGs) and their host clusters in a sample of 7031 clusters with 0.08<z<0.44 found using a matched-filter algorithm and an independent sample of 5744 clusters with 0.1<z<0.3 selected with th e maxBCG algorithm, both extracted from the Sloan Digital Sky Survey Data Release 6 imaging data. We confirm that BCGs are preferentially aligned with the clusters major axis; clusters with dominant BCGs (>0.65 mag brighter than the mean of the second and third ranked galaxies) show stronger alignment than do clusters with less dominant BCGs at the 4.4 sigma level. Rich clusters show a stronger alignment than do poor clusters at the 2.3 sigma level. Low redshift clusters (z<0.26) show more alignment than do high redshift (z>0.26) clusters, with a difference significant at the 3.0 sigma level. Our results do not depend on the algorithm used to select the cluster sample, suggesting that they are not biased by systematics of either algorithm. The correlation between BCG dominance and cluster alignment may be a consequence of the hierarchical merging process which forms the cluster. The observed redshift evolution may follow from secondary infall at late redshifts.
137 - Rene Andrae , Knud Jahnke 2011
Testing theories of angular-momentum acquisition of rotationally supported disc galaxies is the key to understand the formation of this type of galaxies. The tidal-torque theory tries to explain this acquisition process in a cosmological framework an d predicts positive autocorrelations of angular-momentum orientation and spiral-arm handedness on distances of 1Mpc/h. This disc alignment can also cause systematic effects in weak-lensing measurements. Previous observations claimed discovering such correlations but did not account for errors in redshift, ellipticity and morphological classifications. We explain how to rigorously propagate all important errors. Analysing disc galaxies in the SDSS database, we find that positive autocorrelations of spiral-arm handedness and angular-momentum orientations on distances of 1Mpc/h are plausible but not statistically significant. This result agrees with a simple hypothesis test in the Local Group, where we find no evidence for disc alignment. Moreover, we demonstrate that ellipticity estimates based on second moments are strongly biased by galactic bulges, thereby corrupting correlation estimates and overestimating the impact of disc alignment on weak-lensing studies. Finally, we discuss the potential of future sky surveys. We argue that photometric redshifts have too large errors, i.e., PanSTARRS and LSST cannot be used. We also discuss potentials and problems of front-edge classifications of galaxy discs in order to improve estimates of angular-momentum orientation.
Based on the Sloan Digital Sky Survey DR6 (SDSS) and Millennium Simulation (MS) we investigate the alignment between galaxies and large-scale structure. For this purpose we develop two new statistical tools, namely the alignment correlation function and the cos(2theta)-statistic. The former is a two-dimensional extension of the traditional two-point correlation function and the latter is related to the ellipticity correlation function used for cosmic shear measurements. Both are based on the cross correlation between a sample of galaxies with orientations and a reference sample which represents the large-scale structure. Applied to the SDSS galaxy catalog the alignment correlation function reveals an overabundance of reference galaxies along the major axes of red, luminous (L > L*) galaxies out to projected separations of 60 Mpc/h. No alignment signal is detected for blue galaxies. The cos(2theta)-statistic yields very similar results. Starting from a MS semi-analytic galaxy catalog we assign an orientation to each red, luminous and central galaxy, based on the central region of the host halo. Alternatively, we use the orientation of the host halo itself. We find a mean projected misalignment between a halo and its central region of ~25 deg. Agreement with the SDSS results is good if the central orientations are used. Using the halo orientations overestimates the observed alignment by more than a factor of 2. The large volume of the MS allows to generate two-dimensional maps of the alignment correlation function which show the reference galaxy distribution to be flattened parallel to the orientations of red luminous galaxies with axis ratios of ~0.5 and ~0.75 for halo and central orientations,respectively. These ratios are almost independent of scale out to 60 Mpc/h.
Galaxies and clusters embedded in the large-scale structure of the Universe are observed to align in preferential directions. Galaxy alignment has been established as a potential probe for cosmological information, but the application of cluster alig nments for these purposes remains unexplored. Clusters are observed to have a higher alignment amplitude than galaxies, but because galaxies are much more numerous, the trade-off in detectability between the two signals remains unclear. We present forecasts comparing cluster and galaxy alignments for two extragalactic survey set-ups: a currently-available low redshift survey (SDSS) and an upcoming higher redshift survey (LSST). For SDSS, we rely on the publicly available redMaPPer catalogue to describe the cluster sample. For LSST, we perform estimations of the expected number counts while we extrapolate the alignment measurements from SDSS. Clusters in SDSS have typically higher alignment signal-to-noise than galaxies. For LSST, the cluster alignment signals quickly wash out with redshift due to a relatively low number count and a decreasing alignment amplitude. Nevertheless, a potential strong-suit of clusters is in their interplay with weak lensing: intrinsic alignments can be more easily isolated for clusters than for galaxies. The signal-to-noise of cluster alignment can in general be improved by isolating close pairs along the line of sight.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا