ترغب بنشر مسار تعليمي؟ اضغط هنا

Stability and structure of analytical MHD jet formation models with a finite outer disk radius

80   0   0.0 ( 0 )
 نشر من قبل Matthias Stute
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Matthias Stute




اسأل ChatGPT حول البحث

(Abridged) Finite radius accretion disks are a strong candidate for launching astrophysical jets from their inner parts and disk-winds are considered as the basic component of such magnetically collimated outflows. The only available analytical MHD solutions for describing disk-driven jets are those characterized by the symmetry of radial self-similarity. Radially self-similar MHD models, in general, have two geometrical shortcomings, a singularity at the jet axis and the non-existence of an intrinsic radial scale, i.e. the jets formally extend to radial infinity. Hence, numerical simulations are necessary to extend the analytical solutions towards the axis and impose a physical boundary at finite radial distance. We focus here on studying the effects of imposing an outer radius of the underlying accreting disk (and thus also of the outflow) on the topology, structure and variability of a radially self-similar analytical MHD solution. The initial condition consists of a hybrid of an unchanged and a scaled-down analytical solution, one for the jet and the other for its environment. In all studied cases, we find at the end steady two-component solutions.



قيم البحث

اقرأ أيضاً

Theoretical arguments along with observational data of YSO jets suggest the presence of two steady components: a disk wind type outflow needed to explain the observed high mass loss rates and a stellar wind type outflow probably accounting for the ob served stellar spin down. Each components contribution depends on the intrinsic physical properties of the YSO-disk system and its evolutionary stage. The main goal of this paper is to understand some of the basic features of the evolution, interaction and co-existence of the two jet components over a parameter space and when time variability is enforced. Having studied separately the numerical evolution of each type of the complementary disk and stellar analytical wind solutions in Paper I of this series, we proceed here to mix together the two models inside the computational box. The evolution in time is performed with the PLUTO code, investigating the dynamics of the two-component jets, the modifications each solution undergoes and the potential steady state reached.
We report measurements of parallax and proper motion for four 22 GHz water maser sources as part of VERA Outer Rotation Curve project. All sources show Galactic latitudes of $>$ 2$^{circ}$ and Galactocentric distances of $>$ 11 kpc at the Galactic lo ngitude range of 95$^{circ}$ $< l <$ 126$^{circ}$. The sources trace the Galactic warp reaching to 200$sim$400 pc, and indicate the signature of the warp to 600 pc toward the north Galactic pole. The new results along with previous results in the literature show the maximum height of the Galactic warp is increased with Galactocentric distance. Also, we examined velocities perpendicular to the disk for the sample, and found an oscillatory behavior between the vertical velocities and Galactic heights. This behavior suggests the existence of the bending (vertical density) waves, possibly induced by a perturbing satellite (e.g. passage of the Sagittarius dwarf galaxy).
Different variants of hybrid kinetic-fluid models are considered for describing the interaction of a bulk fluid plasma obeying MHD and an energetic component obeying a kinetic theory. Upon using the Vlasov kinetic theory for energetic particles, two planar Vlasov-MHD models are compared in terms of their stability properties. This is made possible by the Hamiltonian structures underlying the considered hybrid systems, whose infinite number of invariants makes the energy-Casimir method effective for determining stability. Equilibrium equations for the models are obtained from a variational principle and in particular a generalized hybrid Grad-Shafranov equation follows for one of the considered models. The stability conditions are then derived and discussed with particular emphasis on kinetic particle effects on classical MHD stability.
145 - Gerhardt Meurer 2016
The HI in galaxies often extends past their conventionally defined optical extent. I report results from our team which has been probing low intensity star formation in outer disks using imaging in H-alpha and ultraviolet. Using a sample of hundreds of HI selected galaxies, we confirm that outer disk HII regions and extended UV disks are common. Hence outer disks are not dormant but are dimly forming stars. Although the ultraviolet light in galaxies is more centrally concentrated than the HI, the UV/HI ratio (the Star Formation Efficiency) is nearly constant, with a slight dependency on surface brightness. This result is well accounted for in a model where disks maintain a constant stability parameter Q. This model also accounts for how the ISM and star formation are distributed in the bright parts of galaxies, and how HI appears to trace the distribution of dark matter in galaxy outskirts.
(abridged) Significant progress has been made in the last years in the understanding of the jet formation mechanism through a combination of numerical simulations and analytical MHD models for outflows characterized by the symmetry of self-similarity . In a previous article we introduced models of truncated jets from disks, i.e. evolved in time numerical simulations based on a radially self-similar MHD solution, but including the effects of a finite radius of the jet-emitting disk and thus the outflow. These models need now to be compared with available observational data. A direct comparison of the results of combined analytical theoretical models and numerical simulations with observations has not been performed as yet. In order to compare our models with observed jet widths inferred from recent optical images taken with HST and AO observations, we use a new set of tools to create emission maps in different forbidden lines, from which we determine the jet width as the FWHM of the emission. It is shown that the untruncated analytical disk outflow solution considered here cannot fit the small jet widths inferred by observations of several jets. Various truncated disk-wind models are examined, whose extracted jet widths range from higher to lower values compared to the observations. Thus we can fit the observed range of jet widths by tuning our models. We conclude that truncation is necessary to reproduce the observed jet widths and our simulations limit the possible range of truncation radii. We infer that the truncation radius, which is the radius on the disk mid-plane where the jet-emitting disk switches to a standard disk, must be between around 0.1 up to about 1 AU in the observed sample for the considered disk-wind solution. One disk-wind simulation with an inner truncation radius at about 0.11 AU also shows potential for reproducing the observations, but a parameter study is needed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا