ترغب بنشر مسار تعليمي؟ اضغط هنا

Future Evolution of Bound Superclusters in an Accelerating Universe

43   0   0.0 ( 0 )
 نشر من قبل Andres Meza
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The evolution of marginally bound supercluster-like objects in an accelerating LambdaCDM Universe is followed, by means of cosmological simulations, from the present time to an expansion factor a = 100. The objects are identified on the basis of the binding density criterion introduced by Dunner et al. (2006). superclusters are identified with the ones whose mass M > 10^15 M_sun/h, the most massive one with M ~ 8x10^15 M_sun/h, comparable to the Shapley supercluster. The spatial distribution of the superclusters remains essentially the same after the present epoch, reflecting the halting growth of the Cosmic Web as Lambda gets to dominate the expansion of the Universe. The same trend can be seen in the stagnation of the development of the mass function of virialized haloes and bound objects. The situation is considerably different when looking at the internal evolution, quantified in terms of their shape, compactness and density profile, and substructure in terms of their multiplicity function. We find a continuing evolution from a wide range of triaxial shapes at a = 1 to almost perfect spherical shapes at a = 100. We also find a systematic trend towards a higher concentration. Meanwhile, we see their substructure gradually disappearing, as the surrounding subclumps fall in and merge to form one coherent, virialized system.

قيم البحث

اقرأ أيضاً

228 - Roya Mohayaee 2021
In the late 1990s, observations of 93 Type Ia supernovae were analysed in the framework of the FLRW cosmology assuming these to be `standard(isable) candles. It was thus inferred that the Hubble expansion rate is accelerating as if driven by a positi ve Cosmological Constant $Lambda$. This is still the only direct evidence for the `dark energy that is the dominant component of the standard $Lambda$CDM cosmological model. Other data such as BAO, CMB anisotropies, stellar ages, the rate of structure growth, etc are all `concordant with this model but do not provide independent evidence for accelerated expansion. Analysis of a larger sample of 740 SNe Ia shows that these are not quite standard candles, and highlights the corrections applied to analyse the data in the FLRW framework. The latter holds in the reference frame in which the CMB is isotropic, whereas observations are made in our heliocentric frame in which the CMB has a large dipole anisotropy. This is assumed to be of kinematic origin i.e. due to our non-Hubble motion driven by local inhomogeneity in the matter distribution. The $Lambda$CDM model predicts how this peculiar velocity should fall off as the averaging scale is raised and the universe becomes sensibly homogeneous. However observations of the local `bulk flow are inconsistent with this expectation and convergence to the CMB frame is not seen. Moreover the kinematic interpretation implies a corresponding dipole in the sky distribution of high redshift quasars, which is rejected by observations at 4.9$sigma$. The acceleration of the Hubble expansion rate is also anisotropic at 3.9$sigma$ and aligned with the bulk flow. Thus dark energy may be an artefact of analysing data assuming that we are idealised observers in an FLRW universe, when in fact the real universe is inhomogeneous and anisotropic out to distances large enough to impact on cosmological analyses.
Aims. We investigate how properties of the ensemble of superclusters in the cosmic web evolve with time. Methods. We perform numerical simulations of the evolution of the cosmic web using the LambdaCDM model in box sizes L0 = 1024, 512, 256 Mpc/h. We find supercluster ensembles of models for four evolutionary stages, corresponding to the present epoch z = 0, and to redshifts z = 1, z = 3, and z = 10. We calculate fitness diameters of superclusters defined from volumes of superclusters divided to filling factors of over-density regions. Geometrical and fitness diameters of largest superclusters, and the number of superclusters as functions of the threshold density are used as percolation functions to describe geometrical properties of the ensemble of superclusters in the cosmic web. We calculate distributions of geometrical and fitness diameters and luminosities of superclusters, and follow time evolution of percolation functions and supercluster distributions. We compare percolation functions and supercluster distributions of models and samples of galaxies of the Sloan Digital Sky Survey (SDSS). Results. Our analysis shows that fitness diameters of superclusters have a minimum at certain threshold density. Fitness diameters around minima almost do not change with time in co-moving coordinates. Numbers of superclusters have maxima which are approximately constant for all evolutionary epochs. Geometrical diameters of superclusters decrease during the evolution of the cosmic web; luminosities of superclusters increase during the evolution. Conclusions. Our study suggests that evolutionary changes occur inside dynamical volumes of superclusters. The stability of fitness diameters and numbers of superclusters during the evolution is an important property of the cosmic web.
The origin of negative pressure fluid (the dark energy) is investigated in the quantum model of the homogeneous, isotropic and closed universe filled with a uniform scalar field and a perfect fluid which defines a reference frame. The equations of th e model are reduced to the form which allows a direct comparison between them and the equations of the Einsteinian classical theory of gravity. It is shown that quantized scalar field has a form of a condensate which behaves as an antigravitating medium. The theory predicts an accelerating expansion of the universe even if the vacuum energy density vanishes. An antigravitating effect of a condensate has a purely quantum nature. It is shown that the universe with the parameters close to the Planck ones can go through the period of exponential expansion. The conditions under which in semi-classical approximation the universe looks effectively like spatially flat with negative deceleration parameter are determined. The reduction to the standard model of classical cosmology is discussed.
It is generally argued that the present cosmological observations support the accelerating models of the universe, as driven by the cosmological constant or `dark energy. We argue here that an alternative model of the universe is possible which expla ins the current observations of the universe. We demonstrate this with a reinterpretation of the magnitude-redshift relation for Type Ia supernovae, since this was the test that gave a spurt to the current trend in favour of the cosmological constant.
We investigate the evolution of superclusters and supercluster cocoons (basins of attraction), and the influence of cosmological parameters to the evolution. We perform numerical simulations of the evolution of the cosmic web for different cosmologic al models: the LCDM model with a conventional value of the dark energy (DE) density, the open model OCDM with no DE, the standard SCDM model with no DE, and the Hyper-DE HCDM model with an enhanced DE density value. We find ensembles of superclusters of these models for five evolutionary stages, corresponding to the present epoch z = 0, and to redshifts z = 1, 3, 10, 30. We use diameters of the largest superclusters and the number of superclusters as percolation functions to describe properties of the ensemble of superclusters in the cosmic web. We analyse the size and mass distribution of superclusters in models and in real Sloan Digital Sky Survey (SDSS) based samples. In all models numbers and volumes of supercluster cocoons are independent on cosmological epochs. Supercluster masses increase with time, and geometrical sizes in comoving coordinates decrease with time, for all models. LCDM, OCDM and HCDM models have almost similar percolation parameters. This suggests that the essential parameter, which defines the evolution of superclusters, is the matter density. The DE density influences the growth of the amplitude of density perturbations, and the growth of masses of superclusters, albeit significantly less strongly. The HCDM model has the largest speed of the growth of the amplitude of density fluctuations, and the largest growth of supercluster masses during the evolution. Geometrical diameters and numbers of HCDM superclusters at high threshold densities are larger than for LCDM and OCDM superclusters. SCDM model has about two times more superclusters than other models; SCDM superclusters have smaller diameters and masses.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا