In this paper we provide a negative answer to a question of Farb about the relation between the algebraic degree of the stretch factor of a pseudo-Anosov homeomorphism and the genus of the surface on which it is defined.
We generalize the hamiltonian topology on hamiltonian isotopies to an intrinsic symplectic topology on the space of symplectic isotopies. We use it to define the group $SSympeo(M,omega)$ of strong symplectic homeomorphisms, which generalizes the grou
p $Hameo(M,omega)$ of hamiltonian homeomorphisms introduced by Oh and Muller. The group $SSympeo(M,omega)$ is arcwise connected, is contained in the identity component of $Sympeo(M,omega)$; it contains $Hameo(M,omega)$ as a normal subgroup and coincides with it when $M$ is simply connected. Finally its commutator subgroup $[SSympeo(M,omega),SSympeo(M,omega)]$ is contained in $Hameo(M,omega)$.
Motivated by results of Thurston, we prove that any autoequivalence of a triangulated category induces a filtration by triangulated subcategories, provided the existence of Bridgeland stability conditions. The filtration is given by the exponential g
rowth rate of masses under iterates of the autoequivalence, and only depends on the choice of a connected component of the stability manifold. We then propose a new definition of pseudo-Anosov autoequivalences, and prove that our definition is more general than the one previously proposed by Dimitrov, Haiden, Katzarkov, and Kontsevich. We construct new examples of pseudo-Anosov autoequivalences on the derived categories of quintic Calabi-Yau threefolds and quiver Calabi-Yau categories. Finally, we prove that certain pseudo-Anosov autoequivalences on quiver 3-Calabi-Yau categories act hyperbolically on the space of Bridgeland stability conditions.
We show that an orientable pseudo-Anosov homeomorphism has vanishing Sah-Arnoux-Fathi invariant if and only if the minimal polynomial of its dilatation is not reciprocal. We relate this to works of Margalit-Spallone and Birman, Brinkmann and Kawamuro
. Mainly, we use Veechs construction of pseudo-Anosov maps to give explicit pseudo-Anosov maps of vanishing Sah-Arnoux-Fathi invariant. In particular, we give new infinite families of such maps in genus 3.
We investigate the structure of the characteristic polynomial det(xI-T) of a transition matrix T that is associated to a train track representative of a pseudo-Anosov map [F] acting on a surface. As a result we obtain three new polynomial invariants
of [F], one of them being the product of the other two, and all three being divisors of det(xI-T). The degrees of the new polynomials are invariants of [F ] and we give simple formulas for computing them by a counting argument from an invariant train track. We give examples of genus 2 pseudo-Anosov maps having the same dilatation, and use our invariants to distinguish them.