ﻻ يوجد ملخص باللغة العربية
This paper proposes a novel Nyquist-rate analog-to-digital (A/D) conversion algorithm which achieves exponential accuracy in the bit-rate despite using imperfect components. The proposed algorithm is based on a robust implementation of a beta-encoder where the value of the base beta is equal to golden mean. It was previously shown that beta-encoders can be implemented in such a way that their exponential accuracy is robust against threshold offsets in the quantizer element. This paper extends this result by allowing for imperfect analog multipliers with imprecise gain values as well. A formal computational model for algorithmic encoders and a general test bed for evaluating their robustness is also proposed.
In this paper we present a block coded modulation scheme for a 2 x 2 MIMO system over slow fading channels, where the inner code is the Golden Code. The scheme is based on a set partitioning of the Golden Code using two-sided ideals whose norm is a p
In this study, we propose a flexible construction of complementary sequences (CSs) that can contain zero-valued elements. To derive the construction, we use Boolean functions to represent a polynomial generated with a recursion. By applying this repr
We construct a strongly local regular Dirichlet form on the golden ratio Sierpinski gasket, which is a self-similar set without any finitely ramified cell structure, via a study on the trace of electrical networks on an infinite graph. The Dirichlet
A simple analytical tool based on stochastic ordering is developed to compare the distributions of carrier-to-interference ratio at the mobile station of two cellular systems where the base stations are distributed randomly according to certain non-h
We discuss the Waring rank of binary forms of degree 4 and 5, without multiple factors, and point out unexpected relations to the harmonic cross-ratio, j-invariants and the golden ratio. These computations of ranks for binary forms are used to show t