ﻻ يوجد ملخص باللغة العربية
By using the finite temperature quantum field theory, we calculate the finite temperature effective potential and extend the improved quark mass density-dependent model to finite temperature. It is shown that this model can not only describe the saturation properties of nuclear matter, but also explain the quark deconfinement phase transition successfully. The critical temperature is given and the effect of $omega$- meson is addressed.
The improved quark mass density- dependent model, which has been successfully used to describe the properties of both finite nuclei and bulk nuclear matter, is extended to include the strange quark. The parameters of the model are determined by the s
An improved quark mass density- dependent model with the non-linear scalar sigma field and the $omega$-meson field is presented. We show that the present model can describe saturation properties, the equation of state, the compressibility and the eff
A new improved quark mass density-dependent model including u, d quarks, $sigma$ mesons, $omega$ mesons and $rho$ mesons is presented. Employing this model, the properties of nuclear matter, neutron matter and neutron star are studied. We find that i
The ambiguities and inconsistencies in previous thermodynamic treatments for the quark mass density-dependent model are addressed. A new treatment is suggested to obtain the self-consistent results. A new independent variable of effective mass is int
The string melting version of a multi-phase transport model is often applied to high-energy heavy-ion collisions since the dense matter thus formed is expected to be in parton degrees of freedom. In this work we improve its quark coalescence componen