ﻻ يوجد ملخص باللغة العربية
Robertson and Seymour proved that every graph with sufficiently large treewidth contains a large grid minor. However, the best known bound on the treewidth that forces an $elltimesell$ grid minor is exponential in $ell$. It is unknown whether polynomial treewidth suffices. We prove a result in this direction. A emph{grid-like-minor of order} $ell$ in a graph $G$ is a set of paths in $G$ whose intersection graph is bipartite and contains a $K_{ell}$-minor. For example, the rows and columns of the $elltimesell$ grid are a grid-like-minor of order $ell+1$. We prove that polynomial treewidth forces a large grid-like-minor. In particular, every graph with treewidth at least $cell^4sqrt{logell}$ has a grid-like-minor of order $ell$. As an application of this result, we prove that the cartesian product $Gsquare K_2$ contains a $K_{ell}$-minor whenever $G$ has treewidth at least $cell^4sqrt{logell}$.
A 1993 result of Alon and Furedi gives a sharp upper bound on the number of zeros of a multivariate polynomial over an integral domain in a finite grid, in terms of the degree of the polynomial. This result was recently generalized to polynomials ove
In this paper we characterize large regular graphs using certain entries in the projection matrices onto the eigenspaces of the graph. As a corollary of this result, we show that large association schemes become $P$-polynomial association schemes. Ou
We define a bivariate polynomial for unlabeled rooted trees and show that the polynomial of an unlabeled rooted tree $T$ is the generating function of a class of subtrees of $T$. We prove that the polynomial is a complete isomorphism invariant for un
In this paper we give a new proof of the universality of the Tutte polynomial for matroids. This proof uses appropriate characters of Hopf algebra of matroids, algebra introduced by Schmitt (1994). We show that these Hopf algebra characters are solut
We focus on counting the number of labeled graphs on $n$ vertices and treewidth at most $k$ (or equivalently, the number of labeled partial $k$-trees), which we denote by $T_{n,k}$. So far, only the particular cases $T_{n,1}$ and $T_{n,2}$ had been s