ﻻ يوجد ملخص باللغة العربية
It is of interest to study supergravity solutions preserving a non-minimal fraction of supersymmetries. A necessary condition for supersymmetry to be preserved is that the spacetime admits a Killing spinor and hence a null or timelike Killing vector field. Any spacetime admitting a covariantly constant null vector field ($CCNV$) belongs to the Kundt class of metrics, and more importantly admits a null Killing vector field. We investigate the existence of additional non-spacelike isometries in the class of higher-dimensional $CCNV$ Kundt metrics in order to produce potential solutions that preserve some supersymmetries.
The gauged sigma model with target $mathbb{P}^1$, defined on a Riemann surface $Sigma$, supports static solutions in which $k_+$ vortices coexist in stable equilibrium with $k_-$ antivortices. Their moduli space is a noncompact complex manifold $M_{(
We define the notion of geodesic completeness for semi-Riemannian metrics of low regularity in the framework of the geometric theory of generalized functions. We then show completeness of a wide class of impulsive gravitational wave space-times.
The aim of this work is to describe the complete family of non-expanding Plebanski-Demianski type D space-times and to present their possible interpretation. We explicitly express the most general form of such (electro)vacuum solutions with any cosmo
We consider travelling times of billiard trajectories in the exterior of an obstacle K on a two-dimensional Riemannian manifold M. We prove that given two obstacles with almost the same travelling times, the generalised geodesic flows on the non-trap
We construct new smooth solutions to the Hull-Strominger system, showing that the Fu-Yau solution on torus bundles over K3 surfaces can be generalized to torus bundles over K3 orbifolds. In particular, we prove that, for $13 leq k leq 22$ and $14leq