ﻻ يوجد ملخص باللغة العربية
We model the cosmological co-evolution of galaxies and their central supermassive black holes (BHs) within a semi-analytical framework developed on the outputs of the Millennium Simulation (Croton et al., 2006; De Lucia & Blaizot, 2007). In this work, we analyze the model BH scaling relations, fundamental plane and mass function, and compare them with the most recent observational data. Furthermore, we extend the original code developed by Croton et al. (2006) to follow the evolution of the BH mass accretion and its conversion into radiation, and compare the derived AGN bolometric luminosity function with the observed one. We find, for the most part, a very good agreement between predicted and observed BH properties. Moreover, the model is in good agreement with the observed AGN number density in 0<z<5, provided it is assumed that the cold gas fraction accreted by BHs at high redshifts is larger than at low redshifts (Marulli et al., 2008).
The star formation rate (SFR) and black hole accretion rate (BHAR) functions are measured to be proportional to each other at z < ~3. This close correspondence between SF and BHA would naturally yield a BH mass-galaxy mass correlation, whereas a BH m
Feedback from accreting SMBHs is often identified as the main mechanism responsible for regulating star-formation in AGN host galaxies. However, the relationships between AGN activity, radiation, winds, and star-formation are complex and still far fr
We develop a formalism to model the luminosity functions (LFs) of radio-loud Active Galactic Nuclei (AGN) at GHz frequencies by the cosmological evolution of the supermassive black hole (SMBH). The mass function and Eddington ratio distributions of S
We summarize what large surveys of the contemporary universe have taught us about the physics and phenomenology of the processes that link the formation and evolution of galaxies and their central supermassive black holes. We present a picture in whi
It is well established that the properties of supermassive black holes and their host galaxies are correlated through scaling relations. While hydrodynamical cosmological simulations have begun to account for the co-evolution of BHs and galaxies, the