ترغب بنشر مسار تعليمي؟ اضغط هنا

Spin dependent Fermi Liquid parameters and properties of polarized quark matter

84   0   0.0 ( 0 )
 نشر من قبل Kausik Pal
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We calculate the spin dependent Fermi liquid parameters (FLPs), single particle energies and energy densities of various spin states of polarized quark matter. The expressions for the incompressibility($K$) and sound velocity ($c_1$) in terms of the spin dependent FLPs and polarization parameter $(xi)$ are derived. Estimated values of $K$ and $c_1$ reveal that the equation of state (EOS) of the polarized matter is stiffer than the unpolarized one. Finally we investigate the possibility of the spin polarization (ferromagnetism) phase transition.

قيم البحث

اقرأ أيضاً

The temperature dependence of the thermodynamic potential of quantum chromodynamics (QCD), the specific heat, and the quark effective mass are calculated for imbalanced quark matter in the limit of a large number of quark flavors (large-$N_F$), which corresponds to the random phase approximation. Also a generalization of the relativistic Landau effective-mass relation in the imbalanced case is given, which is then applied to this thermodynamic potential.
It is shown that the quark spin polarization may occur for each quark flavor by the use of the Nambu-Jona-Lasinio model with a tensor-type four-point interaction between quarks, while the two-flavor color superconducting phase in two-flavor case may be realized at high density quark matter.
We calculate the ground state energy of cold and dense spin polarized quark matter with corrections due to correlation energy $(E_{corr})$. Expressions for $E_{corr}$ both in the non-relativistic and ultra-relativistic regimes have been derived and c ompared with the exchange and kinetic term present in the perturbation series. It is observed that the inclusion of correlation energy does not rule out the possibility of the ferromagnetic phase transition at low density within the model proposed by Tatsumicite{tatsumi00}. We also derive the spin stiffness constant in the high density limit of such a spin polarized matter.
We calculate relativistic Fermi liquid parameters (RFLPs) for the description of the properties of dense nuclear matter (DNM) using Effective Chiral Model. Analytical expressions of Fermi liquid parameters (FLPs) are presented both for the direct and exchange contributions. We present a comparative study of perturbative calculation with mean field (MF) results. Moreover we go beyond the MF so as to estimate the pionic contribution to the FLPs. Finally, we use these parameters to estimate some of the bulk quantities like incompressibility, sound velocity, symmetry energy etc. for DNM interacting via exchange of $sigma$, $omega$ and $pi$ meson. In addition, we also calculate the energy densities and the binding energy curve for the nuclear matter. Results for the latter have been found to be consistent with two loop calculations reported recently within the same model.
We calculate the dimensionless Fermi liquid parameters (FLPs), $F_{0,1}^{sym}$ and $F_{0,1}^{asym}$, for spin asymmetric dense quark matter. In general, the FLPs are infrared divergent due to the exchange of massless gluons. To remove such divergence s, the Hard Density Loop (HDL) corrected gluon propagator is used. The FLPs so determined are then invoked to calculate magnetic properties such as magnetization $langle Mrangle$ and magnetic susceptibility $chi_M$ of spin polarized quark matter. Finally, we investigate the possibility of magnetic instability by studying the density dependence of $langle Mrangle$ and $chi_M$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا