ﻻ يوجد ملخص باللغة العربية
We present a detailed analysis of the production efficiency of weakly bound heteronuclear KRb-Feshbach molecules using radio frequency association in a harmonic trap. The efficiency was measured in a wide range of temperatures, binding energies and radio frequencies. A comprehensive analytical model is presented, explaining the observed asymmetric spectra and achieving good quantitative agreement with the measured production rates. This model provides a deep understanding of the molecule association process and paves the way for future experiments which rely on Feshbach molecules e.g. for the production of deeply bound molecules.
Recently, the quest for an ultracold and dense ensemble of polar molecules has attracted strong interest. Polar molecules have bright prospects for novel quantum gases with long-range and anisotropic interactions, for quantum information science, and
We report the creation of heteronuclear ultralong-range Rydberg-molecule dimers by excitation of minority $^{88}text{Sr}$ atoms to $5sns,^3S_1$ Rydberg states ($n=31-39$) in a dense background of $^{84}text{Sr}$. We observe an isotope shift of the $
We study collisions in an optically trapped, pure sample of ultracold Cs$_2$ molecules in various internal states. The molecular gas is created by Feshbach association from a near-degenerate atomic gas, with adjustable temperatures in the nanokelvin
We report on the observation of ultracold heteronuclear Feshbach molecules. Starting with a $^{87}$Rb BEC and a cold atomic gas of $^{85}$Rb, we utilize previously unobserved interspecies Feshbach resonances to create up to 25,000 molecules. Even tho
We demonstrate and theoretically analyze the dressing of several proximate Feshbach resonances in Rb-87 using radio-frequency (rf) radiation. We present accurate measurements and characterizations of the resonances, and the dramatic changes in scatte