ﻻ يوجد ملخص باللغة العربية
We have derived a model of the Kuiper belt luminosity function exhibited by a broken power-law size distribution. This model allows direct comparison of the observed luminosity function to the underlying size distribution. We discuss the importance of the radial distribution model in determining the break diameter. We determine a best-fit break-diameter of the Kuiper belt size-distribution of 30<Db<90 km via a maximum-likelihood fit of our model to the observed luminosity function. We also confirm that the observed luminosity function for m(R) ~ 21-28 is consistent with a broken power-law size distribution, and exhibits a break at m(R)=26.0+0.7-1.8.
We have performed an ecliptic imaging survey of the Kuiper belt with our deepest and widest field achieving a limiting flux of m(g) = 26.4, with a sky coverage of 3.0 square-degrees. This is the largest coverage of any other Kuiper belt survey to thi
We have performed a survey of the Kuiper belt covering ~ 1/3 a square degree of the sky using Suprime-cam on the Subaru telescope, to a limiting magnitude of m(R)~ 26.8 (50% threshold) and have found 36 new KBOs. We have confirmed that the luminosity
Here we measure the absolute magnitude distributions (H-distribution) of the dynamically excited and quiescent (hot and cold) Kuiper Belt objects (KBOs), and test if they share the same H-distribution as the Jupiter Trojans. From a compilation of all
The cold main classical Kuiper Belt consists of those small solar system bodies with low orbital inclinations and orbital semi-major axes between 42.4 and 47.7~au. Various arguments suggest that these objects formed textit{in situ} and the original p
We have started since 1997 the Meudon Multicolor Survey of Outer Solar System Objects with the aim of collecting a large and homogeneous set of color data for Trans-Neptunian and Centaurs objects [...] We have a combined sample of 52 B-R color measur