ﻻ يوجد ملخص باللغة العربية
Since that very memorable day at the Beijing 2008 Olympics, a big question on every sports commentators mind has been What would the 100 meter dash world record have been, had Usain Bolt not celebrated at the end of his race? Glen Mills, Bolts coach suggested at a recent press conference that the time could have been 9.52 seconds or better. We revisit this question by measuring Bolts position as a function of time using footage of the run, and then extrapolate into the last two seconds based on two different assumptions. First, we conservatively assume that Bolt could have maintained Richard Thompsons, the runner-up, acceleration during the end of the race. Second, based on the race development prior to the celebration, we assume that he could also have kept an acceleration of 0.5 m/s^2 higher than Thompson. In these two cases, we find that the new world record would have been 9.61 +/- 0.04 and 9.55 +/- 0.04 seconds, respectively, where the uncertainties denote 95% statistical errors.
The aim of this paper is to bring a mathematical justification to the optimal way of organizing ones effort when running. It is well known from physiologists that all running exercises of duration less than 3mn are run with a strong initial accelerat
We measure the Planck cluster mass bias using dynamical mass measurements based on velocity dispersions of a subsample of 17 Planck-detected clusters. The velocity dispersions were calculated using redshifts determined from spectra obtained at Gemini
We use a feed-forward artificial neural network with back-propagation through a single hidden layer to predict Barry Cottonfields likely reply to this authors invitation to the Once Upon a Daydream junior prom at the Conard High School gymnasium back
A recent article uncovered a surprising dynamical mechanism at work within the (vacuum) Einstein `flow that strongly suggests that many closed 3-manifolds that do not admit a locally homogeneous and isotropic metric textit{at all} will nevertheless e
The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming