ترغب بنشر مسار تعليمي؟ اضغط هنا

A novel method for measuring the extragalactic background light: Fermi application to the lobes of Fornax A

35   0   0.0 ( 0 )
 نشر من قبل Markos Georganopoulos
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We describe a new method for measuring the extragalactic background light (EBL) through the detection of $gamma$-ray inverse Compton (IC) emission due to scattering of the EBL photons off relativistic electrons in the lobes of radio galaxies. Our method has no free physical parameters and is a powerful tool when the lobes are characterized by a high energy sharp break or cutoff in their electron energy distribution (EED). We show that such a feature will produce a high energy IC `imprint of the EBL spectrum in which the radio lobes are embedded, and show how this imprint can be used to derive the EBL. We apply our method to the bright nearby radio galaxy Fornax A, for which we demonstrate, using WMAP and EGRET observations, that the EED of its lobes is characterized by a conveniently located cutoff, bringing the IC EBL emission into the {sl Fermi} energy range. We show that {sl Fermi} will set upper limits to the optical EBL and measure the more elusive infrared EBL.

قيم البحث

اقرأ أيضاً

We have pioneered a new method for the measurement of extragalactic distances. This method uses the time-lag between variations in the short wavelength and long wavelength light from an active galactic nucleus (AGN), based on a quantitative physical model of dust reverberation that relates the time-lag to the absolute luminosity of the AGN. We use the large homogeneous data set from intensive monitoring observations in optical and near-infrared wavelength bands with the dedicated 2-m MAGNUM telescope to obtain the distances to 17 AGNs in the redshift range z=0.0024 to z=0.0353. These distance measurements are compared with distances measured using Cepheid variable stars, and are used to infer that H_0= 73 +- 3 (random) km/s/Mpc. The systematic error in H_0 is examined, and the uncertainty in the size distribution of dust grains is the largest source of the systematic error, which is much reduced for a sample of AGNs for which their parameter values in the model of dust reverberation are individually measured. This AGN time-lag method can be used beyond 30 Mpc, the farthest distance reached by extragalactic Cepheids, and can be extended to high-redshift quasi-stellar objects.
Current measurements of the spectral energy distribution in radio, X-and-gamma-ray provide a sufficiently wide basis for determining basic properties of energetic electrons and protons in the extended lobes of the radio galaxy Fornax A. Of particular interest is establishing observationally, for the first time, the level of contribution of energetic protons to the extended emission observed by the Fermi satellite. Two recent studies concluded that the observed gamma-ray emission is unlikely to result from Compton scattering of energetic electrons off the optical radiation field in the lobes, and therefore that the emission originates from decays of neutral pions produced in interactions of energetic protons with protons in the lobe plasma, implying an uncomfortably high proton energy density. However, our exact calculation of the emission by energetic electrons in the magnetized lobe plasma leads to the conclusion that all the observed emission can, in fact, be accounted for by energetic electrons scattering off the ambient optical radiation field, whose energy density (which, based on recent observations, is dominated by emission from the central galaxy NGC 1316) we calculate to be higher than previously estimated.
A new method for measuring the shear induced by gravitational light deflection is proposed. It is based on analyzing the anisotropy induced in the auto-correlation function (ACF) of the extragalactic background light which is produced by very faint d istant galaxies. The ACF can be measured `locally, and its anisotropy is caused by the tidal gravitational field of the deflecting mass distribution in the foreground of these faint background galaxies. Since the method does not require individual galaxy detection, it can be used to measure the shear of extremely faint galaxies which are not detectable individually, but are present in the noise. The shear estimated from the ACF of the noise provides an independent measurement which can be compared to the shear obtained from the distortion of individual galaxy images. Combining these two independent estimates clearly increases the sensitivity of shear measurements. In addition, our method may allow to determine the local magnification caused by the deflector if the auto-correlation function is caused by a large number density of faint galaxies; in this case, the intrinsic ACF may provide a `standard source with respect to which shear and magnification can be obtained. Applications to real and synthetic data are shown and the feasibility of our new method is demonstrated. In particular, we present the shear maps obtained with our method for the double QSO 2345+007 and the cluster Cl0024+16 and compare them to published shear maps.
The Extragalactic Background Light (EBL) is the integrated light from all the stars that have ever formed, and spans the IR-UV range. The interaction of very-high-energy (VHE: E>100 GeV) gamma-rays, emitted by sources located at cosmological distance s, with the intervening EBL results in electron-positron pair production that leads to energy-dependent attenuation of the observed VHE flux. This introduces a fundamental ambiguity in the interpretation of the measured VHE blazar spectra: neither the intrinsic spectra, nor the EBL, are separately known - only their combination is. In this paper we propose a method to measure the EBL photon number density. It relies on using simultaneous observations of blazars in the optical, X-ray, high-energy (HE: E>100 MeV) gamma-ray (from the Fermi telescope), and VHE gamma-ray (from Cherenkov telescopes) bands. For each source, the method involves best-fitting the spectral energy distribution (SED) from optical through HE gamma-rays (the latter being largely unaffected by EBL attenuation as long as z<1) with a Synchrotron Self-Compton (SSC) model. We extrapolate such best-fitting models into the VHE regime, and assume they represent the blazars intrinsic emission. Contrasting measured versus intrinsic emission leads to a determination of the gamma-gamma opacity to VHE photons - hence, upon assuming a specific cosmology, we derive the EBL photon number density. Using, for each given source, different states of emission will only improve the accuracy of the proposed method. We demonstrate this method using recent simultaneous multi-frequency observations of the blazar PKS2155-304 and discuss how similar observations can more accurately probe the EBL.
77 - M. Zemcov , T. Arai , J. Battle 2011
The Cosmic Infrared Background Experiment (CIBER) is a suite of four instruments designed to study the near infrared (IR) background light from above the Earths atmosphere. The instrument package comprises two imaging telescopes designed to character ize spatial anisotropy in the extragalactic IR background caused by cosmological structure during the epoch of reionization, a low resolution spectrometer to measure the absolute spectrum of the extragalactic IR background, and a narrow band spectrometer optimized to measure the absolute brightness of the Zodiacal light foreground. In this paper we describe the design and characterization of the CIBER payload. The detailed mechanical, cryogenic, and electrical design of the system are presented, including all system components common to the four instruments. We present the methods and equipment used to characterize the instruments before and after flight, and give a detailed description of CIBERs flight profile and configurations. CIBER is designed to be recoverable and has flown twice, with modifications to the payload having been informed by analysis of the first flight data. All four instruments performed to specifications during the second flight, and the scientific data from this flight are currently being analyzed.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا