ترغب بنشر مسار تعليمي؟ اضغط هنا

The Center of Mass for Spatial Branching Processes and an Application for Self-Interaction

35   0   0.0 ( 0 )
 نشر من قبل Janos Englander
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English
 تأليف Janos Englander




اسأل ChatGPT حول البحث

In this paper we prove that the center of mass of a supercritical branching-Brownian motion, or that of a supercritical super-Brownian motion tends to a limiting position almost surely, which, in a sense complements a result of Tribe on the final behavior of a critical super-Brownian motion. This is shown to be true also for a model where branching Brownian motion is modified by attraction/repulsion between particles. We then put this observation together with the description of the interacting system as viewed from its center of mass, and get the following asymptotic behavior: the system asymptotically becomes a branching Ornstein Uhlenbeck process (inward for attraction and outward for repulsion), but the origin is shifted to a random point which has normal distribution, and the Ornstein Uhlenbeck particles are not independent but constitute a system with a degree of freedom which is less by their number by precisely one.

قيم البحث

اقرأ أيضاً

In this paper we provide an expansion formula for Hawkes processes which involves the addition of jumps at deterministic times to the Hawkes process in the spirit of the well-known integration by parts formula (or more precisely the Mecke formula) fo r Poisson functional. Our approach allows us to provide an expansion of the premium of a class of cyber insurance derivatives (such as reinsurance contracts including generalized Stop-Loss contracts) or risk management instruments (like Expected Shortfall) in terms of so-called shifted Hawkes processes. From the actuarial point of view, these processes can be seen as stressed scenarios. Our expansion formula for Hawkes processes enables us to provide lower and upper bounds on the premium (or the risk evaluation) of such cyber contracts and to quantify the surplus of premium compared to the standard modeling with a homogenous Poisson process.
In this paper we study several aspects of the growth of a supercritical Galton-Watson process {Z_n:nge1}, and bring out some criticality phenomena determined by the Schroder constant. We develop the local limit theory of Z_n, that is, the behavior of P(Z_n=v_n) as v_n earrow infty, and use this to study conditional large deviations of {Y_{Z_n}:nge1}, where Y_n satisfies an LDP, particularly of {Z_n^{-1}Z_{n+1}:nge1} conditioned on Z_nge v_n.
We introduce and study the dynamics of an emph{immortal} critical branching process. In the classic, critical branching process, particles give birth to a single offspring or die at the same rates. Even though the average population is constant in ti me, the ultimate fate of the population is extinction. We augment this branching process with immortality by positing that either: (a) a single particle cannot die, or (b) there exists an immortal stem cell that gives birth to ordinary cells that can subsequently undergo critical branching. We discuss the new dynamical aspects of this immortal branching process.
Corrections and acknowledgment for ``Local limit theory and large deviations for supercritical branching processes [math.PR/0407059]
We consider the branching process in random environment ${Z_n}_{ngeq 0}$, which is a~population growth process where individuals reproduce independently of each other with the reproduction law randomly picked at each generation. We focus on the super critical case, when the process survives with a positive probability and grows exponentially fast on the nonextinction set. Our main is goal is establish Fourier techniques for this model, which allow to obtain a number of precise estimates related to limit theorems. As a consequence we provide new results concerning central limit theorem, Edgeworth expansions and renewal theorem for $log Z_n$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا