ترغب بنشر مسار تعليمي؟ اضغط هنا

Emergence of a Quasar Outflow

230   0   0.0 ( 0 )
 نشر من قبل Frederick Hamann
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We report the first discovery of the emergence of a high-velocity broad-line outflow in a luminous quasar, J105400.40+034801.2 at redshift z ~ 2.1. The outflow is evident in ultraviolet CIV and SiIV absorption lines with velocity shifts v ~ 26,300 km/s and deblended widths FWHM ~ 4000 km/s. These features are marginally strong and broad enough to be considered broad absorption lines (BALs), but their large velocities exclude them from the standard BAL definition. The outflow lines appeared between two observations in the years 2002.18 and 2006.96. A third observation in 2008.48 showed the lines becoming ~40% weaker and 10% to 15% narrower. There is no evidence for acceleration or for any outflow gas at velocities <23,000 km/s. The lines appear to be optically thick, with the absorber covering just 20% of the quasar continuum source. This indicates a characteristic absorber size of ~4 x 10^15 cm, but with a BAL-like total column density log N_H (cm^-2) > 21.2 and average space density n_H > 2 x 10^5 cm^-3. We attribute the emergence of the outflow lines to a substantial flow structure moving across our line of sight, possibly near the ragged edge of the main BAL flow or possibly related to the onset of a BAL evolutionary phase.

قيم البحث

اقرأ أيضاً

349 - Jenny E. Greene 2011
SDSS J1356+1026 is a pair of interacting galaxies at redshift z=0.123 that hosts a luminous obscured quasar in its northern nucleus. Here we present two long-slit Magellan LDSS-3 spectra that reveal a pair of symmetric ~10 kpc-size outflows emerging from this nucleus, with observed expansion velocities of ~250 km/s in projection. We present a kinematic model of these outflows and argue that the deprojected physical velocities of expansion are likely ~1000 km/s and that the kinetic energy of the expanding shells is likely 10^44-10^45 erg/s, with an absolute minimum of >10^42 erg/s. Although a radio counterpart is detected at 1.4GHz, it is faint enough that the quasar is considered to be radio-quiet by all standard criteria, and there is no evidence of extended emission due to radio lobes, whether aged or continuously powered by an ongoing jet. We argue that the likely level of star formation is probably insufficient to power the observed energetic outflow and that SDSS J1356+1026 makes a strong case for radio-quiet quasar feedback. In further support of this hypothesis, polarimetric observations show that the direction of quasar illumination is coincident with the direction of the outflow.
We search for velocity changes (i.e., acceleration/deceleration) of narrow absorption lines (NALs) that are intrinsic to the quasars, using spectra of 6 bright quasars that have been observed more than once with 8-10m class telescopes. While variatio ns in line strength and profile are frequently reported (especially in broader absorption lines), definitive evidence for velocity shifts has not been found with only a few exceptions. Direct velocity shift measurements are valuable constraints on the acceleration mechanisms. In this study, we determine velocity shifts by comparing the absorption profiles of NALs at two epochs separated by more than 10 years in the observed frame, using the cross-correlation function method and we estimate the uncertainties using Monte Carlo simulations. We do not detect any significant shifts but we obtain 3$sigma$ upper limits on the acceleration of intrinsic NALs (compared to intervening NALs in same quasars) of $sim$0.7 km s$^{-1}$ yr$^{-1}$ ($sim$0.002 cm s$^{-2}$). We discuss possible scenarios for non-detection of NAL acceleration/deceleration and examine resulting constraints on the physical conditions in accretion disk wind.
The quasar PDS 456 (at redshift ~0.184) has a prototype ultra-fast outflow (UFO) measured in X-rays. This outflow is highly ionized with relativistic speeds, large total column densities log N_H(cm^-2) > 23, and large kinetic energies that could be i mportant for feedback to the host galaxy. A UV spectrum of PDS 456 obtained with the Hubble Space Telescope in 2000 contains one well-measured broad absorption line (BAL) at ~1346A (observed) that might be Ly-alpha at v ~ 0.06c or NV 1240 at v ~ 0.08c. However, we use photoionisation models and comparisons to other outflow quasars to show that these BAL identifications are problematic because other lines that should accompany them are not detected. We argue that the UV BAL is probably CIV 1549 at v ~ 0.30c. This would be the fastest UV outflow ever reported, but its speed is similar to the X-ray outflow and its appearance overall is similar to relativistic UV BALs observed in other quasars. The CIV BAL identification is also supported indirectly by the tentative detection of another broad CIV line at v ~ 0.19c. The high speeds suggest that the UV outflow originates with the X-ray UFO crudely 20 to 30 r_g from the central black hole. We speculate that the CIV BAL might form in dense clumps embedded in the X-ray UFO, requiring density enhancements of only >0.4 dex compared clumpy structures already inferred for the soft X-ray absorber in PDS 456. The CIV BAL might therefore be the first detection of low-ionisation clumps proposed previously to boost the opacities in UFOs for radiative driving.
Broad absorption lines (BALs) in quasar spectra identify high velocity outflows that might exist in all quasars and could play a major role in feedback to galaxy evolution. The viability of BAL outflows as a feedback mechanism depends on their kineti c energies, as derived from the outflow velocities, column densities, and distances from the central quasar. We estimate these quantities for the quasar, Q1413+1143 (redshift $z_e = 2.56$), aided by the first detection of PV $lambdalambda$1118,1128 BAL variability in a quasar. In particular, PV absorption at velocities where the CIV trough does not reach zero intensity implies that the CIV BAL is saturated and the absorber only partially covers the background continuum source (with characteristic size <0.01 pc). With the assumption of solar abundances, we estimate that the total column density in the BAL outflow is log N_H > 22.3 (cm^-2). Variability in the PV and saturated CIV BALs strongly disfavors changes in the ionization as the cause of the BAL variability, but supports models with high-column density BAL clouds moving across our lines of sight. The observed variability time of 1.6 yr in the quasar rest frame indicates crossing speeds >750 km/s and a radial distance from the central black hole of <3.5 pc, if the crossing speeds are Keplerian. The total outflow mass is ~4100 M_solar, the kinetic energy ~4x10^54 erg, and the ratio of the outflow kinetic energy luminosity to the quasar bolometric luminosity is ~0.02 (at the minimum column density and maximum distance), which might be sufficient for important feedback to the quasars host galaxy.
Quasar outflows are fundamental components of quasar environments that might play an important role in feedback to galaxy evolution. We report on the emergence of a remarkable new outflow absorption-line system in the quasar PG1411+442 (redshift ~0.0 89) detected in the UV and visible with the Hubble Space Telescope Cosmic Origins Spectrograph and the Gemini Multi-Object Spectrograph, respectively. This new transient system contains thousands of lines, including FeII and FeII* from excited states up to 3.89 eV, HI* Balmer lines, NaI D 5890,5896, and the first detection of HeI* 5876 in a quasar. The transient absorber is spatially inhomogeneous and compact, with sizes ~<0.003 pc, based on covering fractions on the quasar continuum source ranging from ~0.45 in strong UV lines to ~0.04 in NaI D. Cloudy photoionization simulations show that large total column densities log N_H(cm^-2) >~ 23.4 and an intense radiation field ~<0.4~pc from the quasar are needed to produce the observed lines in thick zones of both fully-ionised and partially-ionised gas. The densities are conservatively log n_H(cm-3) >~ 7 based on FeII*, HI*, and HeI* but they might reach log n_H(cm^-3) >~ 10 based on NaI D. The transient lines appear at roughly the same velocity shift, v ~ -1900 km/s, as a mini-BAL outflow detected previously, but with narrower Doppler widths, b ~ 100 km/s, and larger column densities in more compact outflow structures. We propose that the transient lines identify a clumpy outflow from the broad emission-line region that, at its current speed and location, is still gravitationally bound to the central black hole.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا